Spectral analysis of the Forel-Ule ocean colour comparator scale (original) (raw)

MERIS-based ocean colour classification with the discrete Forel–Ule scale

Ocean Science, 2013

Multispectral information from satellite borne ocean colour sensors is at present used to characterize natural waters via the retrieval of concentrations of the three dominant optical constituents; pigments of phytoplankton, non-algal particles and coloured dissolved organic matter. A limitation of this approach is that accurate retrieval of these constituents requires detailed local knowledge of the specific absorption and scattering properties. In addition, the retrieval algorithms generally use only a limited part of the collected spectral information. In this paper we present an additional new algorithm that has the merit of using the full spectral information in the visible domain to characterize natural waters in a simple and globally valid way. This Forel-Ule MERIS (FUME) algorithm converts the normalized multiband reflectance information into a discrete set of numbers using uniform colourimetric functions. The Forel-Ule (FU) scale is a sea colour comparator scale that has been developed to cover all possible natural sea colours, ranging from indigo blue (the open ocean) to brownish-green (coastal water) and even brown (humic-acid dominated) waters. Data using this scale have been collected since the late nineteenth century, and therefore, this algorithm creates the possibility to compare historic ocean colour data with present-day satellite ocean colour observations. The FUME algorithm was tested by transforming a number of MERIS satellite images into Forel-Ule colour index images and comparing in situ observed FU numbers with FU numbers modelled from in situ radiometer measurements. Similar patterns and FU numbers were observed when comparing MERIS ocean colour distribution maps with ground truth Forel-Ule observations.

Advances in radiometry for ocean color

SPIE Proceedings, 2003

Organic materials in the oceans have spectral signatures based on their light-scattering properties. These optical properties are related to bio-physical and biochemical data products such as the concentration of phytoplankton chlorophyll-a through bio-optical algorithms. A primary quantity of interest in ocean color research is the water-leaving spectral radiance L w (λ), often normalized by the incident solar flux. For quantitative studies of the ocean, derivation of the relationship between the optical properties and physically meaningful data products is critical. There have been a number of recent advances in radiometry at the National Institute of Standards and Technology that directly impact the uncertainties achievable in ocean-color research. These advances include a new U.S. national irradiance scale; a new laser-based facility for irradiance and radiance responsivity calibrations; and a novel tunable, solid-state source for calibration and bio-optical algorithm validation. These advances, their relevance to measurements of ocean color, and their effects on radiometrically derived ocean-color data products such as chlorophyll-a are discussed.

The continuity of ocean color measurements from SeaWiFS to MODIS

Proceedings of Spie the International Society For Optical Engineering, 2005

The Ocean Biology Processing Group (OBPG) at NASA's Goddard Space Flight Center is responsible for the processing and validation of oceanic optical property retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS). A major goal of this activity is the production of a continuous ocean color time-series spanning the mission life of these sensors from September 1997 to the present time. This paper presents an overview of the calibration and validation strategy employed to optimize and verify sensor performance for retrieval of upwelling radiances just above the sea surface. Substantial focus is given to the comparison of results over the common mission lifespan of SeaWiFS and the MODIS flying on the Aqua platform, covering the period from July 2002 through December 2004. It will be shown that, through consistent application of calibration and processing methodologies, a continuous ocean color time-series can be produced from two different spaceborne sensors.

Quality and Consistency of the NASA Ocean Color Data Record

The NASA Ocean Biology Processing Group (OBPG) recently reprocessed the multi-mission ocean color time-series from SeaWiFS, MODIS-Aqua, and MODIS-Terra using common algorithms and improved instrument calibration knowledge. Here we present an analysis of the quality and consistency of the resulting ocean color retrievals, including spectral water-leaving reflectance, chlorophyll a concentration, and diffuse attenuation. Statistical analysis of satellite retrievals relative to in situ measurements will be presented for each sensor, as well as an assessment of consistency in the global time-series for the overlapping periods of the missions. Results will show that the satellite retrievals are in good agreement with in situ measurements, and that the sensor ocean color data records are highly consistent over the common mission lifespan for the global deep oceans, but with degraded agreement in higher productivity, higher complexity coastal regions.

Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5. Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Protocols

2003

The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 (Mueller and Fargion 2002, Volumes 1 and 2) is entirely superseded by the seven Volumes of Revision 4 listed above. The new multi-volume format for publishing the ocean optics protocols is intended to allow timely future revisions to be made reflecting important evolution of instruments and methods in some areas, without reissuing the entire document. Over the years, as existing protocols were revised, or expanded for clarification, and new protocol topics were added, the ocean optics protocol document has grown from 45pp (Mueller and Austin 1992) to 308pp in Revision 3 (Mueller and Fargion 2002). This rate of growth continues in Revision 4. The writing and editorial tasks needed to publish each revised version of the protocol manual as a single document has become progressively more difficult as its size increases. Chapters that change but little, must nevertheless be rewritten for each revision to reflect relatively minor changes in, e.g., cross-referencing and to maintain self-contained consistency in the protocol manual. More critically, as it grows bigger, the book becomes more difficult to use by its intended audience. A massive new protocol manual is difficult for a reader to peruse thoroughly enough to stay current with and apply important new material and revisions it may contain. Many people simply find it too time consuming to keep up with changing protocols presented in this format-which may explain why some relatively recent technical reports and journal articles cite Mueller and Austin (1995), rather than the then current, more correct protocol document. It is hoped that the new format will improve community access to current protocols by stabilizing those volumes and chapters that do not change significantly over periods of several years, and introducing most new major revisions as new chapters to be added to an existing volume without revision of its previous contents. The relationships between the Revision 4 chapters of each protocol volume and those of Revision 3 (Mueller and Fargion 2002), and the topics new chapters, are briefly summarized below: Volume I: This volume covers perspectives on ocean color research and validation (Chapter 1), fundamental definitions, terminology, relationships and conventions used throughout the protocol document (Chapter 2), requirements for specific in situ observations (Chapter 3), and general protocols for field measurements, metadata, logbooks, sampling strategies, and data archival (Chapter 4). Chapters 1, 2 and 3 of Volume I correspond directly to Chapters 1, 2 and 3 of Revision 3 with no substantive changes. Two new variables, Particulate Organic Carbon (POC) and Particle Size Distribution (PSD) have been added to Tables 3.1 and 3.2 and the related discussion in Section 3.4; protocols covering these measurements will be added in a subsequent revision to Volume V (see below). Chapter 4 of Volume I combines material from Chapter 9 of Revision 3 with a brief summary of SeaBASS policy and archival requirements (detailed SeaBASS information in Chapter 18 and Appendix B of Revision 3 has been separated from the optics protocols). Volume II: The chapters of this volume review instrument performance characteristics required for in situ observations to support validation (Chapter 1), detailed instrument specifications and underlying rationale (Chapter 2) and protocols for instrument calibration and characterization standards and methods (Chapters 3 through 5). Chapters 1 through 5 of Volume II correspond directly to Revision 3 chapters 4 through 8, respectively, with only minor modifications. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume II ii Volume III: The chapters of this volume briefly review methods used in the field to make the in situ radiometric measurements for ocean color validation, together with methods of analyzing the data (Chapter 1), detailed measurement and data analysis protocols for in-water radiometric profiles (Chapter 2), above water measurements of remote sensing reflectance (Chapter III-3), determinations of exact normalized water-leaving radiance (Chapter 4), and atmospheric radiometric measurements to determine aerosol optical thickness and sky radiance distributions (Chapter 5). Chapter 1 is adapted from relevant portions of Chapter 9 in Revision 3. Chapter 2 of Volume III corresponds to Chapter 10 of Revision 3, and Chapters 3 through 5 to Revision 3 Chapters 12 through 14, respectively. Aside from reorganization, there are no changes in the protocols presented in this volume. Volume IV: This volume includes a chapter reviewing the scope of inherent optical properties (IOP) measurements (Chapter 1), followed by 4 chapters giving detailed calibration, measurement and analysis protocols for the beam attenuation coefficient (Chapter 2), the volume absorption coefficient measured in situ (Chapter 3), laboratory measurements of the volume absorption coefficients from discrete filtered seawater samples (Chapter 4), and in situ measurements of the volume scattering function, including determinations of the backscattering coefficient (Chapter 5). Chapter 4 of Volume IV is a slightly revised version of Chapter 15 in Revision 3, while the remaining chapters of this volume are entirely new contributions to the ocean optics protocols. These new chapters may be significantly revised in the future, given the rapidly developing state-of-the-art in IOP measurement instruments and methods. Volume V: The overview chapter (Chapter 1) briefly reviews biogeochemical and bio-optical measurements, and points to literature covering methods for measuring these variables; some of the material in this overview is drawn from Chapter 9 of Revision 3. Detailed protocols for HPLC measurement of phytoplankton pigment concentrations are given in Chapter 2, which differs from Chapter 16 of Revision 3 only by its specification of a new solvent program. Chapter 3 gives protocols for Fluorometric measurement of chlorophyll a concentration, and is not significantly changed from Chapter 17of Revision 3. New chapters covering protocols for measuring, Phycoerythrin concentrations, Particle Size Distribution (PSD) and Particulate Organic Carbon (POC) concentrations are likely future additions to this volume. Volume VI: This volume gathers chapters covering more specialized topics in the ocean optics protocols. Chapter 1 introduces these special topics in the context of the overall protocols. Chapter 2 is a reformatted, but otherwise unchanged, version of Chapter 11 in Revision 3 describing specialized protocols used for radiometric measurements associated with the Marine Optical Buoy (MOBY) ocean color vicarious calibration observatory. The remaining chapters are new in Revision 4 and cover protocols for radiometric and bio-optical measurements from moored and drifting buoys (Chapter 3), ocean color measurements from aircraft (Chapter 4), and methods and results using LASER sources for stray-light characterization and correction of the MOBY spectrographs (Chapter 5). In the next few years, it is likely that most new additions to the protocols will appear as chapters added to this volume. Volume VII: This volume collects appendices of useful information. Appendix A is an updated version of Appendix A in Revision 3 summarizing characteristics of past, present and future satellite ocean color missions. Appendix B is the List of Acronyms used in the report and is an updated version of Appenix C in Revision 3. Similarly, Appendix C, the list of Frequently Used Symbols, is an updated version of Appendix D from Rev. 3. The SeaBASS file format information given in Appendix B of Revision 3 has been removed from the protocols and is promulgated separately by the SIMBIOS Project. In the Revision 4 multi-volume format of the ocean optics protocols, Volumes I, II and III are unlikely to require significant changes for several years. The chapters of Volume IV may require near term revisions to reflect the rapidly evolving state-of-the-art in measurements of inherent optical properties, particularly concerning instruments and methods for measuring the Volume Scattering Function of seawater. It is anticipated that new chapters will be also be added to Volumes V and VI in Revision 5 (2003). This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational Project. The contributions are published as submitted, after only minor editing to correct obvious grammatical or clerical errors.

The continuity of ocean color measurements from SeaWiFS to MODIS

Earth Observing Systems X, 2005

The Ocean Biology Processing Group (OBPG) at NASA's Goddard Space Flight Center is responsible for the processing and validation of oceanic optical property retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS). A major goal of this activity is the production of a continuous ocean color time-series spanning the mission life of these sensors from September 1997 to the present time. This paper presents an overview of the calibration and validation strategy employed to optimize and verify sensor performance for retrieval of upwelling radiances just above the sea surface. Substantial focus is given to the comparison of results over the common mission lifespan of SeaWiFS and the MODIS flying on the Aqua platform, covering the period from July 2002 through December 2004. It will be shown that, through consistent application of calibration and processing methodologies, a continuous ocean color time-series can be produced from two different spaceborne sensors.

The Forel-Ule scale revisited spectrally: preparation protocol, transmission measurements and chromaticity

The Forel-Ule colour comparator scale has been applied globally and intensively by oceanographers and limnologists since the 19th century, providing one of the oldest oceanographic data sets. Present and future Forel-Ule classifications of global oceanic, coastal and continental waters can facilitate the interpretation of these long-term ocean colour data series and provide a connection between the present and the past that will be valuable for climate-related studies. Within the EC-funded project CITLOPS (Citizens' Observatory for Coast and Ocean Optical Monitoring), with its main goal to empower endusers, willing to employ community-based environmental monitoring, our aim is to digitalize the colours of the Forel-Ule scale to establish the colour of natural waters through smartphone imaging. The objective of this study was to reproduce the Forel-Ule scale following the original recipes, measure the transmission of the solutions and calculate the chromaticity coordinates of the scale as Wernand and Van der Woerd did in 2010, for the future development of a smartphone application. Some difficulties were encountered when producing the scale, so a protocol for its consistent reproduction was developed and is described in this study. Recalculated chromaticity coordinates are presented and compared to measurements conducted by former scientists. An error analysis of the spectral and colourimetric information shows negligible experimental errors.

RESEARCH NEEDS IN OCEAN COLOR DATA ANALYSES

Sept 1973 NASA/Goddard Space Flight Center Rept X-652-73-261 The success of the effort to extract several subsurface oceanographic parameters from remotely sensed ocean color data will depend to a great extent upon the existence of adequate theoretical models relating the desired oceanographic parameters to the upwelling radiances to be observed.In order to guide the development of these models, and to check their accuracies, a considerable amount of experimental work must be performed. The theoretical and experimental work which will be needed to develop techniques for the quantitative analysis of satellite ocean color data is described.