Radiation force exerted on nanometer size non-resonant Kerr particle by a tightly focused Gaussian beam (original) (raw)

Radiation force on a nonlinear microsphere by a tightly focused Gaussian beam

Applied optics, 2002

We determine the characteristics of the radiation force that is exerted on a nonresonant nonlinear ͑Kerr-effect͒ rigid microsphere by a strongly focused Gaussian beam when diffraction and interference effects are significant ͑sphere radius a Յ illumination wavelength ͒. The average force is calculated from the surface integral of the energy-momentum tensor consisting of incident, scattered, and internal electromagnetic field vectors, which are expressed as multipole spherical-wave expansions. The refractive index of a Kerr microsphere is proportional to the internal field intensity, which is computed iteratively by the Rytov approximation ͑residual error of solution, 10 Ϫ30 ͒. The expansion coefficients for the field vectors are calculated from the approximated index value. Compared with that obtained in a dielectric ͑linear͒ microsphere in the same illumination conditions, we find that the force magnitude on the Kerr microsphere is larger and increases more rapidly with both a and the numerical aperture of the focusing objective. It also increases nonlinearly with the beam power unlike that of a linear sphere. The Kerr nonlinearity also leads to possible reversals of the force direction. The proposed technique is applicable to other types of weak optical nonlinearity.

Single Gaussian beam interaction with a Kerr microsphere: characteristics of the radiation force

Applied optics, 1997

We analyze the characteristics of the radiation force that is generated when a highly focused unpolarized Gaussian beam interacts with a nonabsorbing microsphere whose refractive index exhibits a first-order dependence on the beam intensity. The behavior of the force exerted on the sphere is analyzed as a function of beam power, axial distance, sphere radius, refractive-index difference between the sphere and the surrounding liquid, and wavelength. The force characteristics are compared with those of the radiation force that is generated when the electro-optic Kerr effect is absent. Our results show that a reversal in the net force direction is introduced when the Kerr effect becomes significant, which occurs at sufficiently high beam intensities.

Unified treatment of nonlinear optical force in laser trapping of dielectric particles of varying sizes

Physical Review Research, 2021

Optical trapping using laser tweezer has revolutionized the field of force spectroscopy having enormous applications in biological manipulation. While a number of theories were developed for particles of different sizes to estimate trapping force under continuous-wave excitation, they were not under short pulsed excitation which leads to nonlinear optical force. Here, we present a comparative study of various theories and provide a unified description for laser trapping under femtosecond pulsed excitation. Numerical results show that exact Mie theory (EMT) can provide a precise qualitative and quantitative prediction of trapping force when optical Kerr effect is included. Moreover, we also show how Mie interference phenomena, leading to observation of Fano resonance, are naturally captured within EMT. Thus, our findings pave the way for potential far-reaching applications in the accurate numerical estimation of nonlinear optical force on arbitrary-sized spherical dielectric particles.

Theoretical estimation of nonlinear optical force on dielectric spherical particles of arbitrary size under femtosecond pulsed excitation

Physical Review A, 2017

Experimental evidence indicates that high-repetition-rate ultrafast pulsed excitation is more efficient in optical trapping of dielectric nanoparticles as compared with continuous-wave excitation at the same average power. The physics behind the different nature of force under these two excitation conditions remained deceptive until quite recently when it was theoretically explained, in the dipole limit, as a combined effect of (1) repetitive instantaneous momentum transfer and (2) optical Kerr nonlinearity. The role of optical Kerr effect was theoretically studied for larger dielectric spherical particles, in the ray optics limit, also. However, a theoretical underpinning is yet to be established as to whether the effect of optical nonlinearity is omnipresent across different particle sizes, which we investigate here. Using localized approximation of generalized Lorenz-Mie theory, we theoretically analyze the nature of force (and potential) and provide a detailed comparative discussion between this generalized scattering formulation with dipole scattering formulation for dielectric nanoparticles.

Laser Self-Trapping in Optical Tweezers for Nonlinear Particles

The optical tweezers are used to trap the particles embedded in a suitable fluid. The optical trap efficiency is significantly enhanced for nonlinear particleswhich response to the Kerr effect. The optical transverse gradient force makes these particles’ mass density in trapping region increasing, and the Kerr medium can be created. When the laser Gaussian beam propagates through it, the self-focusing, and consequentlyself-trappingcan appear. In this paper, a model describing the laser self-trapping in nonlinear particle solution of optical tweezers is proposed. The expressions for the Kerr effect, effective refractive index of nonlinear particle solution and the intensity distribution of reshaped Gaussian laser beam are derived, and the self-trapping of laser beam is numerically investigated. Finally, the guide properties of nonlinear particles-filled trapping region and guiding condition are analysed and discussed.

Optical levitation of a non-spherical particle in a loosely focused Gaussian beam

Optics Express, 2012

The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.

Calculation and optical measurement of laser trapping forces on non-spherical particles

Journal of Quantitative Spectroscopy and Radiative Transfer, 2001

Optical trapping, where microscopic particles are trapped and manipulated by light is a powerful and widespread technique, with the single-beam gradient trap (also known as optical tweezers) in use for a large number of biological and other applications. The forces and torques acting on a trapped particle result from the transfer of momentum and angular momentum from the trapping beam to the particle. Despite the apparent simplicity of a laser trap, with a single particle in a single beam, exact calculation of the optical forces and torques acting on particles is difficult. Calculations can be performed using approximate methods, but are only applicable within their ranges of validity, such as for particles much larger than, or much smaller than, the trapping wavelength, and for spherical isotropic particles. This leaves unfortunate gaps, since wavelength-scale particles are of great practical interest because they are readily and strongly trapped and are used to probe interesting microscopic and macroscopic phenomena, and non-spherical or anisotropic particles, biological, crystalline, or other, due to their frequent occurance in nature, and the possibility of rotating such objects or controlling or sensing their orientation. The systematic application of electromagnetic scattering theory can provide a general theory of laser trapping, and render results missing from existing theory. We present here calculations of force and torque on a trapped particle obtained from this theory and discuss the possible applications, including the optical measurement of the force and torque.

Calculation of the trapping force in a strongly focused laser beam

Journal of the Optical Society of America B, 1992

We present what is, to the best of our knowledge, the first detailed calculation of the reverse trapping force acting on a dielectric sphere when it is illuminated by a strongly focused laser beam. The calculation is carried out within the geometrical optics approximation. The phenomenon of laser trapping was discovered experimentally by Ashkin et al. [Opt. Lett. 11, 288 (1986)] and is of great practical interest in view of the possibility it offers for freely manipulating biological particles, such as viruses and bacteria, in a nondestructive manner. We support our calculations by a qualitative experiment that clearly shows the accessibility of the trapping effect in practice. We use, as an experimental improvement, an objective with a central field stop producing a conical dark field. This enhances the relative contribution from high-N.A. illumination and makes it easier to achieve optical trapping. 27rp/A ; 100. (1.2) The general theory for the interaction between a laser beam and a dielectric sphere was worked out by Roosen and co-workers 5-9 within the framework of geometrical