Clinical significance of different effects of static and pulsed electromagnetic fields on human osteoclast cultures (original) (raw)

Primary human osteoblasts with reduced alkaline phosphatase and matrix mineralization baseline capacity are responsive to extremely low frequency pulsed electromagnetic field exposure — Clinical implication possible

Bone Reports, 2015

For many years electromagnetic fields (EMFs) have been used clinically with various settings as an exogenous stimulation method to promote fracture healing. However, underlying mechanisms of action and EMF parameters responsible for certain effects remain unclear. Our aim was to investigate the influence of defined EMFs on human osteoblasts' and osteoclasts' viability and function. Primary human osteoblasts and osteoclasts were treated 3 times weekly for 21 days during their maturation process using the Somagen® device (Sachtleben GmbH, Hamburg, Germany), generating defined extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs). Certain ELF-PEMF treatment significantly increased the total protein content (up to 66%), mitochondrial activity (up to 91.1%) and alkaline phosphatase (AP) activity (up to 129.9%) of human osteoblasts during the entire differentiation process. Furthermore, ELF-PEMF treatment enhanced formation of mineralized matrix (up to 276%). Interestingly, ELF-PEMF dependent induction of AP activity and matrix mineralization was strongly donor dependentonly osteoblasts with a poor initial osteoblast function responded to the ELF-PEMF treatment. As a possible regulatory mechanism, activation of the ERK1/2 signaling pathway was identified. Maturation of osteoclasts from human monocytes was not affected by the ELF-PEMF treatment. In summary the results indicate that a specific ELF-PEMF treatment with the Somagen® device improves viability and maturation of osteoblasts, while osteoclast viability and maturation was not affected. Hence, ELF-PEMF might represent an interesting adjunct to conventional therapy supporting bone formation during fracture healing or even for the treatment of osteoporosis.

The cellular effects of Pulsed Electromagnetic Fields on osteoblasts: A review

Bioelectromagnetics, 2019

Electromagnetic fields (EMFs) have long been known to interact with living organisms and their cells and to bear the potential for therapeutic use. Among the most extensively investigated applications, the use of Pulsed EMFs (PEMFs) has proven effective to ameliorate bone healing in several studies, although the evidence is still inconclusive. This is due in part to our still‐poor understanding of the mechanisms by which PEMFs act on cells and affect their functions and to an ongoing lack of consensus on the most effective parameters for specific clinical applications. The present review has compared in vitro studies on PEMFs on different osteoblast models, which elucidate potential mechanisms of action for PEMFs, up to the most recent insights into the role of primary cilia, and highlight the critical issues underlying at least some of the inconsistent results in the available literature. Bioelectromagnetics. 2019;9999:XX–XX. © 2019 Bioelectromagnetics Society.

Responses of human normal osteoblast cells and osteoblast-like cell line, MG63 cells, to pulse electromagnetic field (PEMF

The objective of this in vitro study is to investigate the effect of pulsed electromagnetic field (PEMF) on cellular proliferation and osteocalcin production of osteoblast-like cell line, MG-63 cells, and human normal osteoblast cells (NHOC) obtained from surgical bone specimens. The cells were placed in 24-well culture plates in the amount of 3x10 4 cell/wells with 2 ml αMEM media supplemented with 10% FBS. The experimental plates were placed between a pair of Helmoltz coils powered by a pulse generator (PEMF, 50 Hz, 1.5 mV/cm) in the upper compartment of a dual incubator (Forma). The control plates were placed in the lower compartment of the incubator without Helmotz coils. After three days, the cell proliferation was measured by the method modified from Mossman (J. Immunol Methods 1983; 65: 55-63). Other sets of plates were used for osteocalcin production assessment. Media from these sets were collected after 6 days and assessed for osteocalcin production using ELISA kits. The data were analyzed using a one-way analysis of variance (ANOVA). The results showed that MG-63 cells from the experimental group proliferated significantly more than those from the control group (20% increase, p<0.05). No significant difference in osteocalcin production was detected between the two groups. On the other hand, NHOC from the experimental group produced larger amount of osteocalcin (25% increase, p<0.05) and proliferated significantly more than those from the control group (100% increase, p<0.05). In conclusion, PEMF effect on osteoblasts might depend on their cell type of origin. For osteoblast-like cell line, MG-63 cells, PEMF increased proliferation rate but not osteocalcin production of the cells. However, PEMF stimulation effect on human normal osteoblast cells was most likely associated with enhancement of both osteocalcin production and cell proliferation.

Static electromagnetic fields generated by corrosion currents inhibit human osteoblast differentiation

Spine, 2008

Human osteoblast cultures were exposed to a very low intensity static magnetic fields (SMF) to investigate its effects on osteoblast growth and differentiation. Analysis of the effects of periprosthetic SMF on the growth and differentiation of human osteoblast cell cultures in vitro. The effects of pulsed electromagnetic fields (PEMF) on cell proliferation, especially in human osteoblast-like cells is well described, whereas few data are available on the effects of SMF on osteoblast cell culture. We previously demonstrated that the proliferation of human osteoblast cultures is reduced when cells are exposed to a continuous low intensity SMF comparable to the one that occurs around metal devices (Ti spinal implant) because of the generation of electric currents between the screw (Ti6Al4V) and the rod (Ti). Primary osteoblastic cells were isolated from a human femoral head. Osteoblast cultures were exposed to SMF and alkaline phosphatase activity was evaluated in the osteoblast cell c...

Triggering cultured human osteoblast-like cells’ maturation by an extremely low magnitude alternating electromagnetic field

Iberoamerican Journal of Medicine

Introduction: Alternating and pulsed electromagnetic magnetic fields (AEMF and PEMF) of different amplitudes and frequencies can induce metabolic and proliferative effects in osteoblasts, but there is no clearly directed tendency of these effects. I hypothesize that there are extremely low triggering parameters of alternating electromagnetic field (EMF) intensity, i.e., above the background magnetic field on earth but below the lowest AEMF and PEMF that have been investigated to date (above 0.07 mT and below 0.4 mT) that induce cellular response. Methods: Accordingly, human monolayer explant culture replica were exposed four times in 24-hour intervals to two minutes of 10 kHz AEMF or PEMF (10 Hz pulses at a basic 5 kHz frequency) with a maximal EMF intensity of 0.2 mT for both. Cell proliferation was estimated from microscopic cell counting and cell death by lactate dehydrogenase (LDH) specific activity in culture media (measured using a colorimetric method). The early marker of ost...

The Response of Osteoblasts and Bone to Sinusoidal Electromagnetic Fields: Insights from the Literature

Calcified Tissue International, 2019

Electromagnetic fields (EMFs) have been proposed as a tool to ameliorate bone formation and healing. Despite their promising results, however, they have failed to enter routine clinical protocols to treat bone conditions where higher bone mass has to be achieved. This is no doubt also due to a fundamental lack of knowledge and understanding on their effects and the optimal settings for attaining the desired therapeutic effects. This review analysed the available in vitro and in vivo studies that assessed the effects of sinusoidal EMFs (SEMFs) on bone and bone cells, comparing the results and investigating possible mechanisms of action by which SEMFs interact with tissues and cells. The effects of SEMFs on bone have not been as thoroughly investigated as pulsed EMFs; however, abundant evidence shows that SEMFs affect the proliferation and differentiation of osteoblastic cells, acting on multiple cellular mechanisms. SEMFs have also proven to increase bone mass in rodents under normal conditions and in osteoporotic animals.

Stimulation of osteoblast growth by an electromagnetic field in a model

The histogenesis of bone tissue is strongly influenced by physical forces, including magnetic fields. Recent advances in tissue engineering has permitted the generation of three dimensional bone-like constructs.We have investigated the effects of electromagnetic stimulation on human osteoblast cells grown in a hydrophobic polyurethane scaffold. Bone-like constructs were stimulated by pulsed electromagnetic fields in a bioreactor. Proliferation, bone protein expression and calcified matrix production by osteoblasts were measured using histochemical methods. In stimulated cultures, the number of cells was significantly higher compared to static (control) cultures. In both stimulated and control cultures, cells were immunoreactive to osteoblast markers, including type-I collagen, osteocalcin and osteopontin, thus suggesting that the expression of bone-related markers was maintained throughout the in vitro experiments. Morphometric analysis of von Kossa-stained sections revealed that st...

Improved osteogenic differentiation by extremely low electromagnetic field exposure: possible application for bone engineering

Histochemistry and Cell Biology

Human periodontal ligament mesenchymal stem cells (hPDLSCs) are a promising cell type model for regenerative medicine applications due to their anti-inflammatory, immunomodulatory and non-tumorigenic potentials. Extremely low-frequency electromagnetic fields (ELF-EMF) are reported to affect biological properties such as cell proliferation and differentiation and modulate gene expression profile. In this study, we investigated the effects of an intermittent ELF-EMF exposure (6 h/day) for the standard differentiation period (28 days) and for 10 days in hPDLSCs in the presence or not of osteogenic differentiation medium (OM). We evaluated cell proliferation, de novo calcium deposition and osteogenic differentiation marker expression in sham and ELF-EMF-exposed cells. After ELF-EMF exposure, compared with sham-exposed, an increase in cell proliferation rate (p < 0.001) and de novo calcium deposition (p < 0.001) was observed after 10 days of exposure. Real-time PCR and Western blot...

Morphologic responses of osteoblast-like cells in monolayer culture to ELF electromagnetic fields

Bioelectromagnetics, 2000

Osteoblast-like cells (MC 3T3-E1) were exposed for 24 h, immediately after plating, to a 60 Hz, 0.7 mT rms magnetic flux density, sufficient to induce an electric field of 0.5 mV/m rms, in order to investigate the influence of ELF field exposure on cell morphology. Using phase contrast images of the live cells, computerized image-analysis permitted rapid and objective quantification of cell length, width, area, perimeter, circularity and angular orientation. While the field-exposed cells were consistently smaller than sham treated cells, the morphologic alterations were not significantly different in the exposed cell population when cell orientation was not considered. When analyzed with respect to cell orientation, cells oriented parallel to the induced electric field (orthogonal to the applied magnetic field) demonstrated a significant decrease in cell length and an increase in roundness. These results confirm and extend previous studies on the morphologic adaptation of cells to low level ELF electromagnetic fields. The results suggest that the observed responses most likely depend on the induced electric field, with a field intensity threshold well below 1 mV/m. Further, these results provide important clues to the specific mechanism by which such low level fields may be capable of influencing cell behavior, and help to explain some of the difficulties in obtaining robust responses in in vitro EMF experiments. Bioelectromagnetics 21:129±136, 2000.