Indiscriminable sounds determine the direction of visual motion (original) (raw)

Sound Frequency and Aural Selectivity in Sound-Contingent Visual Motion Aftereffect

PLoS ONE, 2012

Background: One possible strategy to evaluate whether signals in different modalities originate from a common external event or object is to form associations between inputs from different senses. This strategy would be quite effective because signals in different modalities from a common external event would then be aligned spatially and temporally. Indeed, it has been demonstrated that after adaptation to visual apparent motion paired with alternating auditory tones, the tones begin to trigger illusory motion perception to a static visual stimulus, where the perceived direction of visual lateral motion depends on the order in which the tones are replayed. The mechanisms underlying this phenomenon remain unclear. One important approach to understanding the mechanisms is to examine whether the effect has some selectivity in auditory processing. However, it has not yet been determined whether this aftereffect can be transferred across sound frequencies and between ears.

Alternation of Sound Location Induces Visual Motion Perception of a Static Object

PLoS ONE, 2009

Background: Audition provides important cues with regard to stimulus motion although vision may provide the most salient information. It has been reported that a sound of fixed intensity tends to be judged as decreasing in intensity after adaptation to looming visual stimuli or as increasing in intensity after adaptation to receding visual stimuli. This audiovisual interaction in motion aftereffects indicates that there are multimodal contributions to motion perception at early levels of sensory processing. However, there has been no report that sounds can induce the perception of visual motion.

Sounds can alter the perceived direction of a moving visual object

Journal of Vision, 2012

Auditory temporal or semantic information often modulates visual motion events. However, the effects of auditory spatial information on visual motion perception were reported to be absent or of smaller size at perceptual level. This could be caused by a superiority of vision over hearing in reliability of motion information. Here, we manipulated the retinal eccentricity of visual motion and challenged the previous findings. Visual apparent motion stimuli were presented in conjunction with a sound delivered alternately from two horizontally or vertically aligned loudspeakers; the direction of visual apparent motion was always perpendicular to the direction in which the sound alternated. We found that the perceived direction of visual motion could be consistent with the direction in which the sound alternated or lay between this direction and that of actual visual motion. The deviation of the perceived direction of motion from the actual direction was more likely to occur at larger retinal eccentricities. These findings suggest that the auditory and visual modalities can mutually influence one another in motion processing so that the brain obtains the best estimates of external events.

Auditory Motion Information Drives Visual Motion Perception

PLoS ONE, 2011

Background: Vision provides the most salient information with regard to the stimulus motion. However, it has recently been demonstrated that static visual stimuli are perceived as moving laterally by alternating left-right sound sources. The underlying mechanism of this phenomenon remains unclear; it has not yet been determined whether auditory motion signals, rather than auditory positional signals, can directly contribute to visual motion perception.

Sound-contingent visual motion aftereffect

BMC Neuroscience, 2011

Background: After a prolonged exposure to a paired presentation of different types of signals (e.g., color and motion), one of the signals (color) becomes a driver for the other signal (motion). This phenomenon, which is known as contingent motion aftereffect, indicates that the brain can establish new neural representations even in the adult's brain. However, contingent motion aftereffect has been reported only in visual or auditory domain. Here, we demonstrate that a visual motion aftereffect can be contingent on a specific sound. Results: Dynamic random dots moving in an alternating right or left direction were presented to the participants. Each direction of motion was accompanied by an auditory tone of a unique and specific frequency. After a 3-minutes exposure, the tones began to exert marked influence on the visual motion perception, and the percentage of dots required to trigger motion perception systematically changed depending on the tones. Furthermore, this effect lasted for at least 2 days. Conclusions: These results indicate that a new neural representation can be rapidly established between auditory and visual modalities.

Beyond perceptual modality: Auditory effects on visual perception

Acoustical Science and Technology, 2001

Three sets of new findings with regard to modulation of visual perception by auditory stimuli are reviewed. First, we show that visual temporal resolution can be either improved or deteriorated by accompanying sounds, depending on the sequence and delay among the auditory and visual stimuli. Second, a single visual flash can be perceived as multiple flashes when accompanied by multiple sounds. Third, an ambiguous motion display consisting of two objects moving toward each other is perceived as streaming with or without an unsynchronized sound, but as bouncing with a synchronized sound. Based on these findings, we argue, against the traditional belief of visual dominance, that audition can modify vision particularly when it provides strong transient signal(s).

Changing pitch of sounds alters perceived visual motion trajectory

Multisensory research, 2013

Several studies have examined the effects of auditory stimuli on visual perception. In studies of cross-modal correspondences, auditory pitch has been shown to modulate visual motion perception. In particular, low-reliability visual motion stimuli tend to be affected by metaphorically or physically congruent or incongruent sounds. In the present study, we examined the modulatory effects of auditory pitch on visual perception of motion trajectory for visual inputs of varying reliability. Our results indicated that an auditory pitch implying the illusory motion toward the outside of the visual field-modulated perceived motion trajectory. In contrast, auditory pitch implying the illusory motion toward the central visual field did not affect the perception of motion trajectory. This asymmetrical effect of auditory stimuli occurred depending on the reliability of the visual input. Moreover, sounds that corresponded in terms of their pitch-elevation mapping altered the perception of the t...

Early Cross-Modal Interactions in Auditory and Visual Cortex Underlie a Sound-Induced Visual Illusion

Journal of Neuroscience, 2007

When a single flash of light is presented interposed between two brief auditory stimuli separated by 60 -100 ms, subjects typically report perceiving two flashes . We investigated the timing and localization of the cortical processes that underlie this illusory flash effect in 34 subjects by means of 64-channel recordings of event-related potentials (ERPs). A difference ERP calculated to isolate neural activity associated with the illusory second flash revealed an early modulation of visual cortex activity at 30 -60 ms after the second sound, which was larger in amplitude in subjects who saw the illusory flash more frequently. These subjects also showed this early modulation in response to other combinations of auditory and visual stimuli, thus pointing to consistent individual differences in the neural connectivity that underlies cross-modal integration. The overall pattern of cortical activity associated with the cross-modally induced illusory flash, however, differed markedly from that evoked by a real second flash. A trial-by-trial analysis showed that short-latency ERP activity localized to auditory cortex and polymodal cortex of the temporal lobe, concurrent with gamma bursts in visual cortex, were associated with perception of the doubleflash illusion. These results provide evidence that perception of the illusory second flash is based on a very rapid dynamic interplay between auditory and visual cortical areas that is triggered by the second sound.

Visual motion influences the contingent auditory motion aftereffect

Psychological Science, 2003

In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa). Auditory aftereffects (i.e., a shift in the psychometric function for unimodal auditory motion perception) were bigger when a visual stimulus moved in the same direction as the sound than when no visual stimulus was presented. When the visual stimulus moved in the opposite direction, aftereffects were reversed and thus became contingent upon visual motion. When visual motion was combined with a stationary sound, no aftereffect was observed. These findings indicate that there are strong perceptual links between the visual and auditory motion-processing systems.