Crystal structure of Yeco fromHaemophilus influenzae (HI0319) reveals a methyltransferase fold and a boundS-adenosylhomocysteine (original) (raw)

Crystal structure of the homocysteine methyltransferase MmuM from Escherichia coli

The Biochemical journal, 2015

Homocysteine S -methyltransferases (HMTs, EC 2.1.1.0) catalyze the conversion of homocysteine to methionine using S -methylmethionine or S -adenosylmethionine as the methyl donor. HMTs play an important role in methionine biosynthesis and are widely distributed among microorganisms, plants, and animals. Additionally, HMTs play a role in metabolite repair of S -adenosylmethionine by removing an inactive diastereomer from the pool. The mmuM gene product from Escherichia coli is an archetypal HMT family protein and contains a predicted Zn-binding motif in the enzyme active site. Here we present X-ray structures for MmuM in oxidized, apo, and metallated forms, representing the first such structures for any member of the HMT family. The structures reveal a metal/substrate binding pocket distinct from those in related enzymes. The presented structure analysis and modelling of co-substrate interactions provide valuable insight into the function of MmuM in both methionine biosynthesis and c...

Convergent Mechanistic Features between the Structurally Diverse N- and O-Methyltransferases: Glycine N-Methyltransferase and Catechol O-Methyltransferase

Journal of the American Chemical Society, 2016

Although an enormous and still growing number of biologically diverse methyltransferases have been reported and identified, a comprehensive understanding of the enzymatic methyl transfer mechanism is still lacking. Glycine N-methyltransferase (GNMT), a member of the family that acts on small metabolites as the substrate, catalyzes methyl transfer from S-adenosyl-l-methionine (AdoMet) to glycine to form S-adenosyl-l-homocysteine and sarcosine. We report primary carbon ((12)C/(14)C) and secondary ((1)H3/(3)H3) kinetic isotope effects at the transferred methyl group, together with (1)H3/(3)H3 binding isotope effects for wild-type GNMT and a series of Tyr21 mutants. The data implicate a compaction effect in the methyl transfer step that is conferred by the protein structure. Furthermore, a remarkable similarity of properties is observed between GNMT and catechol O-methyltransferase, despite significant differences between these enzymes with regard to their active site structures and cat...