DNA Double Strand Break Repair: A Radiation Perspective (original) (raw)
Related papers
Mutation Research/Reviews in Mutation Research, 2012
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. ''Superfluous'' protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Strahlentherapie und Onkologie, 2007
Background and Purpose: DNA double-strand breaks (dsbs) in lymphoblastoid cell lines (LCLs), fibroblasts and white blood cells from healthy donors, cancer patients with and without late effects of grade 3-4 (RTOG) as well as donors with known radiosensitivity syndromes were examined with the aim to detect dsb repair ability as a marker for radiosensitivity. Material and Methods: LCLs from six healthy donors, seven patients with a heterozygous or homozygous genotype for ataxiatelangiectasia (ATM) and Nijmegen breakage syndrome (NBS), two patients with a late toxicity of grade 3-4 (RTOG), and one cell line with a ligase IV -/status and its parental cell line were examined. Furthermore, fibroblasts from patients with ATM, NBS, two healthy control individuals, and leukocytes from 16 healthy and 22 cancer patients including seven patients with clinical hypersensitivity grade 3 (RTOG) were examined. Cells were irradiated in vitro with 0-150 Gy. Initial damage as well as remaining damage after 8 and 24 h were measured using constant field gel electrophoresis. Results: In contrast to cells derived from patients homozygous for NBS, impaired dsb repair ability could be detected both in fibroblast and lymphoblastoid cells from ATM and ligase IV -/patients. The dsb repair ability of all 38 leukocyte cell lines (patients with grade 3-4 late effects and controls) was similar, whereas the initial damage among healthy donors was less. Conclusion: Despite showing a clinically elevated radiosensitivity after irradiation, the DNA repair of the patients with clinical hypersensitivity grade 3 (RTOG) appeared to be normal. Other mechanisms such as mutations, altered cell cycle or defective apoptosis could play a critical role toward determining radiosensitivity.
Radiation-induced DNA double-strand break rejoining in human tumour cells
British Journal of Cancer, 1995
Smm_ary Five established human breast cancer cell lines and one established human bladder cancer cell line of varying radiosensitivity have been used to determine whether the rejoining of DNA double-strand breaks (dsbs) shows a correlation with radiosensitivity. The kinetics of dsb rejoining was biphasic and both components proceeded exponentially with time. The half-time (t, j of rejoining ranged from 18.0 ± 1.4 to 36.4 ± 3.2 min (fast rejoining process) and from 1.5 ± 0.2 to 5.1 ± 0.2 h (slow rejoining process). We found a statistically significant relationship between the survival fraction at 2 Gy (SF2) and the t, of the fast rejoining component (r = 0.949, P = 0.0039). Our results suggest that cell lines which show rapid rejoining are more radioresistant. These results support the view that, as well as the level of damage induction that we have reported previously, the repair process is a major determinant of cellular radiosensitivity. It is possible that the differences found in DNA dsb rejoining and the differences in DNA dsb induction are related by a common mechanism, e.g. conformation of chromatin in the cell. Keywords radiosensitivity; DNA double-strand breaks; dsb rejoining; pulsed field gel electrophoresis
Frontiers in Oncology, 2013
Radiation therapy plays an important role in the management of a wide range of cancers. Besides innovations in the physical application of radiation dose, radiation therapy is likely to benefit from novel approaches exploiting differences in radiation response between normal and tumor cells. While ionizing radiation induces a variety of DNA lesions, including base damages and single-strand breaks, the DNA double-strand break (DSB) is widely considered as the lesion responsible not only for the aimed cell killing of tumor cells, but also for the general genomic instability that leads to the development of secondary cancers among normal cells. Homologous recombination repair (HRR), non-homologous end-joining (NHEJ), and alternative NHEJ, operating as a backup, are the major pathways utilized by cells for the processing of DSBs. Therefore, their function represents a major mechanism of radiation resistance in tumor cells. HRR is also required to overcome replication stress -a potent contributor to genomic instability that fuels cancer development. HRR and alternative NHEJ show strong cell-cycle dependency and are likely to benefit from radiation therapy mediated redistribution of tumor cells throughout the cell-cycle. Moreover, the synthetic lethality phenotype documented between HRR deficiency and PARP inhibition has opened new avenues for targeted therapies. These observations make HRR a particularly intriguing target for treatments aiming to improve the efficacy of radiation therapy. Here, we briefly describe the major pathways of DSB repair and review their possible contribution to cancer cell radioresistance. Finally, we discuss promising alternatives for targeting DSB repair to improve radiation therapy and cancer treatment.
Nucleic Acids Research, 2011
In cells exposed to ionizing radiation (IR), doublestrand breaks (DSBs) form within clustered-damage sites from lesions disrupting the DNA sugar-phosphate backbone. It is commonly assumed that these DSBs form promptly and are immediately detected and processed by the cellular DNA damage response (DDR) apparatus. This assumption is questioned by the observation that after irradiation of naked DNA, a fraction of DSBs forms minutes to hours after exposure as a result of temperature dependent, chemical processing of labile sugar lesions. Excess DSBs also form when IR-exposed cells are processed at 50 C, but have been hitherto considered method-related artifact. Thus, it remains unknown whether DSBs actually develop in cells after IR exposure from chemically labile damage. Here, we show that irradiation of 'naked' or chromatin-organized mammalian DNA produces lesions, which evolve to DSBs and add to those promptly induced, after 8-24 h in vitro incubation at 37 C or 50 C. The conversion is more efficient in chromatin-associated DNA, completed within 1 h in cells and delayed in a reducing environment. We conclude that IR generates sugar lesions within clustered-damage sites contributing to DSB formation only after chemical processing, which occurs efficiently at 37 C. This subset of delayed DSBs may challenge DDR, may affect the perceived repair kinetics and requires further characterization.
Cellular responses to DNA double-strand breaks after low-dose -irradiation
Nucleic Acids Research, 2009
DNA double-strand breaks (DSBs) are a serious threat to genome stability and cell viability. Although biological effects of low levels of radiation are not clear, the risks of low-dose radiation are of societal importance. Here, we directly monitored induction and repair of single DSBs and quantitatively analyzed the dynamics of interaction of DNA repair proteins at individual DSB sites in living cells using 53BP1 fused to yellow fluorescent protein (YFP-53BP1) as a surrogate marker. The number of DSBs formed was linear with dose from 5 mGy to 1 Gy. The DSBs induced by very low radiation doses (5 mGy) were repaired with efficiency similar to repair of DSBs induced at higher doses. The YFP-53BP1 foci are dynamic structures: 53BP1 rapidly and reversibly interacted at these DSB sites. The time frame of recruitment and affinity of 53BP1 for DSB sites were indistinguishable between low and high doses, providing mechanistic evidence for the similar DSB repair after low-and high-dose radiation. These findings have important implications for estimating the risk associated with lowdose radiation exposure on human health.
Cellular responses to DNA double-strand breaks after low-dose γ-irradiation
Nucleic Acids Research, 2009
DNA double-strand breaks (DSBs) are a serious threat to genome stability and cell viability. Although biological effects of low levels of radiation are not clear, the risks of low-dose radiation are of societal importance. Here, we directly monitored induction and repair of single DSBs and quantitatively analyzed the dynamics of interaction of DNA repair proteins at individual DSB sites in living cells using 53BP1 fused to yellow fluorescent protein (YFP-53BP1) as a surrogate marker. The number of DSBs formed was linear with dose from 5 mGy to 1 Gy. The DSBs induced by very low radiation doses (5 mGy) were repaired with efficiency similar to repair of DSBs induced at higher doses. The YFP-53BP1 foci are dynamic structures: 53BP1 rapidly and reversibly interacted at these DSB sites. The time frame of recruitment and affinity of 53BP1 for DSB sites were indistinguishable between low and high doses, providing mechanistic evidence for the similar DSB repair after low-and high-dose radiation. These findings have important implications for estimating the risk associated with lowdose radiation exposure on human health.
DNA polymerase θ-mediated repair of high LET radiation-induced complex DNA double-strand breaks
Nucleic Acids Research
DNA polymerase θ (POLQ) is a unique DNA polymerase that is able to perform microhomology-mediated end-joining as well as translesion synthesis (TLS) across an abasic (AP) site and thymine glycol (Tg). However, the biological significance of the TLS activity is currently unknown. Herein we provide evidence that the TLS activity of POLQ plays a critical role in repairing complex DNA double-strand breaks (DSBs) induced by high linear energy transfer (LET) radiation. Radiotherapy with high LET radiation such as carbon ions leads to more deleterious biological effects than corresponding doses of low LET radiation such as X-rays. High LET-induced DSBs are considered to be complex, carrying additional DNA damage such as AP site and Tg in close proximity to the DSB sites. However, it is not clearly understood how complex DSBs are processed in mammalian cells. We demonstrated that genetic disruption of POLQ results in an increase of chromatid breaks and enhanced cellular sensitivity followin...
Physics of Particles and Nuclei Letters
With the use of the DNA comet assay and immunocytochemical staining, regularities have been studied in the induction and repair of DNA double-strand breaks(DSBs) in human cells after exposure to 60 Co γ-rays and accelerated heavy ions with different linear energy transfer (LET) in the presence of the DNA repair inhibitors cytosine arabinoside and hydroxyurea. It is shown that for heavy ions the agents' modifying effect decreases with increasing particles' LET. The approach involving DNA synthesis inhibitors used in this study allows an estimation of the proportion of enzymatic DNA DSBs in total DSB yield after exposure to ionizing radiations of different quality.