Study the N Turnover of Legume Seed Meals for Designing a Slow-Release Nitrogen Fertilizer (original) (raw)

Communications in Soil Science and Plant Analysis, 2014

Abstract

ABSTRACT To mitigate environmental problems and synchronize releasing nitrogen (N) with crop demand, slow-release N fertilizers can be a solution. In this research, the mechanism of the N immobilization in stable sources (not unstable sources such as microbial biomass and extractable organic N) for finding an appropriate compound in designing a slow-release N fertilizer was investigated. The experiments were carried out in a randomized complete block design using an incubation chamber to study the N mineralization in coarse and fine fractions of yellow lupin, blue lupin, and faba bean. The results showed that the major N immobilization occurred at 10 to 17 days after incubation. At this phase, only the polyphenols had a significant correlation coefficient with the N immobilization (r = 0.80). At 17 to 31 and 31 to 61 days after incubation, the N immobilization had significant relationship with cellulose (r = 0.96) and hemicellulose (r = 0.89), respectively. It seems that with advancing incubation time, cellulose and hemicellulose were released from cell walls, and similarly to polyphenol were bound to nitrate N (NO3−-N), ammonium N (NH4+-N), or extractable organic N through different interactions. Although the main mechanisms of N immobilization in soil after adding plant materials with a high carbon (C)/N ratio are described in the literature, the available data do not yet present an appropriate composition of targeted, innovative, and slow-release N fertilizers. According to the obtained results, tests are suggested to find the optimum nitrification inhibitor using the powder of plant residues with different ratios of these compounds incorporated with inorganic fertilizers.

Hossein Sabahi hasn't uploaded this paper.

Let Hossein know you want this paper to be uploaded.

Ask for this paper to be uploaded.