Oncolytic viruses & their specific targeting to tumour cells (original) (raw)

Oncolytic Viruses—Interaction of Virus and Tumor Cells in the Battle to Eliminate Cancer

Frontiers in Oncology

Oncolytic viruses (OVs) are an emerging treatment option for many cancer types and have recently been the focus of extensive research aiming to develop their therapeutic potential. The ultimate aim is to design a virus which can effectively replicate within the host, specifically target and lyse tumor cells and induce robust, long lasting tumor-specific immunity. There are a number of viruses which are either naturally tumor-selective or can be modified to specifically target and eliminate tumor cells. This means they are able to infect only tumor cells and healthy tissue remains unharmed. This specificity is imperative in order to reduce the side effects of oncolytic virotherapy. These viruses can also be modified by various methods including insertion and deletion of specific genes with the aim of improving their efficacy and safety profiles. In this review, we have provided an overview of the various virus species currently being investigated for their oncolytic potential and the positive and negative effects of a multitude of modifications used to increase their infectivity, anti-tumor immunity, and treatment safety, in particular focusing on the interaction of tumor cells and OVs.

Trial Watch:: Oncolytic viruses for cancer therapy

Oncoimmunology, 2014

Oncolytic viruses are natural or genetically modified viral species that selectively infect and kill neoplastic cells. Such an innate or exogenously conferred specificity has generated considerable interest around the possibility to employ oncolytic viruses as highly targeted agents that would mediate cancer cell-autonomous anticancer effects. Accumulating evidence, however, suggests that the therapeutic potential of oncolytic virotherapy is not a simple consequence of the cytopathic effect, but strongly relies on the induction of an endogenous immune response against transformed cells. In line with this notion, superior anticancer effects are being observed when oncolytic viruses are engineered to express (or co-administered with) immunostimulatory molecules. Although multiple studies have shown that oncolytic viruses are well tolerated by cancer patients, the full-blown therapeutic potential of oncolytic virotherapy, especially when implemented in the absence of immunostimulatory ...

Oncolytic Viruses for Cancer Therapy: Overcoming the Obstacles

Viruses, 2010

Targeted therapy of cancer using oncolytic viruses has generated much interest over the past few years in the light of the limited efficacy and side effects of standard cancer therapeutics for advanced disease. In 2006, the world witnessed the first government-approved oncolytic virus for the treatment of head and neck cancer. It has been known for many years that viruses have the ability to replicate in and lyse cancer cells. Although encouraging results have been demonstrated in vitro and in animal models, most oncolytic viruses have failed to impress in the clinical setting. The explanation is multifactorial, determined by the complex interactions between the tumor and its microenvironment, the virus, and the host immune response. This review focuses on discussion of the obstacles that oncolytic virotherapy faces and recent advances made to overcome them, with particular reference to adenoviruses.

Future directions: oncolytic viruses

Clinical lung cancer, 2004

Oncolytic viruses offer a promising new modality for cancer treatment. The strategy of this therapy is to develop viruses capable of selectively infecting and replicating in malignant tumor cells. Oncolytic viruses can spread and destroy malignant tumors without deleterious effects in normal tissues. These viruses are genetically engineered based on both the biology of replicating viruses and the major genetic defects in human cancer cells, so that they can replicate in cancer cells but not in normal cells. The key to the development of such viruses is the identification of viral genes, the deletion or modification of which enables tumor-specific cell destruction. Several clinical trials have demonstrated the safety of oncolytic viruses as cancer therapy and have also shown some encouraging results. Much evidence suggests that oncolytic viral therapy works in synergy with standard cancer therapies. In this review, we will focus on the oncolytic viruses that may be beneficial to pati...

Oncolytic Viruses -A New Era for Cancer Therapy

Journal of Life Science, 2019

Oncolytic viruses have primarily the unique advantage in the fact that they can only infect and destroy cancer cells. Secondary, oncolytic viruses induce the activation of specific adaptive immunity which targets tumor-associated antigens that were hidden during the initial cancer progression. In 2015, one genetically modified oncolytic virus, talimogene laherparepvec (T-VEC), was approved by the American Food and Drug Administration (FDA) for the treatment of melanoma. Currently, various oncolytic viruses are being investigated in clinical trials as monotherapy or in combination with preexistent cancer therapies like immunotherapy, radiotherapy or chemotherapy. The efficacy of oncolytic virotherapy relies on the balance between the induced anti-tumor immunity and the anti-viral response. Despite the revolutionary outcome, the development of oncolytic viruses for the treatment of cancer faces a number of obstacles such as delivery method, neutralizing antibodies and induction of antiviral immunity due to the complexity, variability and reactivity of tumors. Intratumoral administration has been successful reducing considerably solid tumors with no notable side effects unfortunately some tumors are not accessible (brain) and require a systemic administration of the oncolytic viruses.

Recent advances of oncolytic virus in cancer therapy

Human Vaccines & Immunotherapeutics, 2020

Oncolytic viruses have been taking the front stage in biological therapy for cancer recently. The first and most potent virus to be used in oncolytic virotherapy is human adenovirus. Recently, ongoing extensive research has suggested that other viruses like herpes simplex virus (HSV) and measles virus can also be considered as potential candidates in cancer therapy. An HSV-based oncolytic virus, T-VEC, has completed phase Ш clinical trial and has been approved by the U.S. Food and Drug Administration (FDA) for use in biological cancer therapy. Moreover, the vaccine strain of the measles virus has shown impressive results in pre-clinical and clinical trials. Considering their therapeutic efficacy, safety, and reduced side effects, the use of such engineered viruses in biological cancer therapy has the potential to establish a milestone in cancer research. In this review, we summarize the recent clinical advances in the use of oncolytic viruses in biological therapy for cancer. Additionally, this review evaluates the potential viral candidates for their benefits and shortcomings and sheds light on the future prospects.

An Overview on Oncolytic Viruses as Cancer Therapy

The current regimen of cancer therapy (chemotherapy and radiotherapy) suffers with disadvantages such as narrow therapeutic index that further facilitate tumor evolves drug resistance and severe side-effects. Oncolytic viruses are therapeutically useful anticancer viruses that will selectively infect and damage cancerous tissues without causing harm to the normal tissues. Many naturally occurring Oncolytic viruses have a preferential tropism to tumor or associated endothelial cells and others are genetically engineered to change their cellular or organ tropism toward cancer. Antitumor effect of Oncolytic viruses is either by locale cell death or by initiation of the systemic immune response against tumor. Oncolytic Adenovirus, Herpes Simplex Virus, Newcastle Disease Virus, and Reoviruse are representative of Oncolytic viruses that have potential to lysis tumor. The effects of the host immune response on the efficacy of Oncolytic viruses are complex. But, using of carrier cells as delivery vehicles could hide the viral antigen from antibodies and complements. Oncolytic viruses have been combined with many cancer therapies to increase response against cancer. Since many forms of canine or feline neoplasms resemble to humane counterpart. So, oncologists believe that Oncolytic virotherapy could soon be a reality in veterinary medicine.

Oncolytic Viruses in Tumor Therapy: The Russian Perspective

2021

The idea of using the lytic power of viruses against the malignant cells has been entertained for many decades. However, oncolytic viruses (OV) gained broad attention as an emerging anti-cancer therapy only recently with the successful implementation of the oncolytic herpesvirus to treat advanced melanoma. OVs offer an attractive therapeutic combination of tumor-specific cell lysis together with immune stimulation, yet the latter effect is less well studied. Nevertheless, OVs can be envisaged as potential in situ tumor vaccines. The therapeutic potential of OVs can be instigated further by using the molecular biological and biotechnological tools to modify the existing viruses for their optimal tumor selectivity and enhanced immune stimulation. Furthermore, OVs can be readily combined with other therapeutic agents to increase the efficacy of the existing therapeutic schemes. In this review, we discuss biotechnological advances in the development of therapeutic applications of OVs in...