Electrophoretic analysis of glycoprotein glycans produced by lepidopteran insect cells infected with an immediate early recombinant baculovirus encoding mammalian beta1,4-galactosyltransferase (original) (raw)
Related papers
Glycoconjugate J, 1999
Glycosylation, the most extensive co-and post-translational modi®cation of eukaryotic cells, can signi®cantly affect biological activity and is particularly important for recombinant glycoproteins in human therapeutic applications. The baculovirus-insect cell expression system is a popular tool for the expression of heterologous proteins and has an excellent record of producing high levels of biologically active eukaryotic proteins. Insect cells are capable of glycosylation, but their N-glycosylation pathway is truncated in comparison with the pathway of mammalian cells. A previous study demonstrated that an immediate early recombinant baculovirus could be used to extend the insect cell N-glycosylation pathway by contributing bovine b-1,4 galactosyltransferase (GalT) immediately after infection. Lectin blotting assays indicated that this ectopically expressed enzyme could transfer galactose to an N-linked glycan on a foreign glycoprotein expressed later in infection. In the current study, glycans were isolated from total Sf-9 cell glycoproteins after infection with the immediate early recombinant baculovirus encoding GalT,¯uorescently conjugated and analyzed by electrophoresis in combination with exoglycosidase digestion. These direct analyses clearly demonstrated that Sf-9 cells infected with this recombinant baculovirus can synthesize galactosylated N-linked glycans.
Glycobiology, 1998
The potential of insect cell cultures and larvae infected with recombinant baculoviruses to produce authentic recombinant glycoproteins cloned from mammalian sources was investigated. A comparison was made of the N-linked glycans attached to secreted alkaline phosphatase (SEAP) produced in four species of insect larvae and their derived cell lines plus one additional insect cell line and larvae of one additional species. These data survey N-linked oligosaccharides produced in four families and six genera of the order Lepidoptera. Recombinant SEAP expressed by recombinant isolates of Autographa californica and Bombyx mori nucleopolyhedroviruses was purified from cell culture medium, larval hemolymph or larval homogenates by phosphate affinity chromatography. The N-linked oligosaccharides were released with PNGase-F, labeled with 8-aminonaphthalene-1-3-6-trisulfonic acid, fractionated by polyacrylamide gel electrophoresis, and analyzed by fluorescence imaging.
Glycobiology, 2014
Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5′-diphospho (GDP)-4-dehydro-6-deoxy-D-mannose reductase (Rmd), which consumes the GDP-L-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-L-fucose, the donor substrate required for this process. Initially, we engineered two different insect cell lines to constitutively express Rmd and isolated subclones with fucosylation-negative phenotypes. However, we found the fucosylation-negative phenotypes induced by Rmd expression were unstable, indicating that this host cell engineering approach is ineffective in insect systems. Thus, we constructed a baculovirus vector designed to express Rmd immediately after infection and facilitate the insertion of genes encoding any glycoprotein of interest for expression later after infection. We used this vector to produce a daughter encoding rituximab and found, in contrast to an Rmd-negative control, that insect cells infected with this virus produced a nonfucosylated form of this therapeutic antibody. These results indicate that our Rmd + baculoviral vector can be used to solve the immunogenic core α1,3-fucosylation problem associated with the baculovirus-insect cell system. In conjunction with existing glycoengineered insect cell lines, this vector extends the utility of the baculovirus-insect cell system to include therapeutic glycoprotein production. This new vector also extends the utility of the baculovirus-insect cell system to include the production of recombinant antibodies with enhanced effector functions, due to its ability to block core α1,6-fucosylation.
Biotechnology Progress, 2000
The conditions required for mammalian-type complex N-linked glycosylation of human proteins produced in insect cells with the baculovirus expression vector system were investigated. Marked alterations to N-linked glycosylation of human placental secreted alkaline phosphatase (SEAP) were observed with different baculovirus species, insect cell lines, and cell culture media. When a recombinant Autographa californica nucleopolyhedrovirus (AcMNPV) was used to produce SEAP in Trichoplusia ni (Tn-4h) cells cultured in serum-free medium, structural analyses indicated <1% hybrid and no complex oligosaccharides attached to SEAP, a typical result with the baculovirus expression vector system. However, when fetal bovine serum was added to the culture medium, 48 ( 4% of the oligosaccharides were hybrid or complex (but asialylated) glycans. When a recombinant T. ni nucleopolyhedrovirus (TnSNPV) was similarly used to express SEAP in Tn-4h cells cultured in serum-containing medium, only 24 ( 3% of the glycans contained terminal N-acetylglucosamine and/or galactose residues. In contrast, SEAP produced in Sf9 cells grown in serum-containing medium with AcMNPV contained <1% hybrid oligosaccharides and no complex oligosaccharides. The results illustrate that baculovirus type, host cell type, and the growth medium all have a strong influence on the glycosylation pathway in insect cells, resulting in significant alterations in structures and relative abundance of N-linked glycoforms. Although the addition of sialic acid residues to the SEAP glycans was not detected, possible approaches to obtain sialylated glycans are discussed. * Ph:
Novel Insect Cell Line Capable of Complex N‐Glycosylation and Sialylation of Recombinant Proteins
Biotechnology Progress, 2003
Paucimannose or oligomannose structures are usually attached to glycoproteins produced by insect cells, while mammalian glycoproteins usually have complex glycans. The lack of complex glycosylation has limited the use of the insect cell baculovirus expression vector system (BEVS), despite its high productivity and versatility. The availability of cell lines capable of complex glycosylation can overcome such a problem and potentially increase the utility of BEVS. In this work the capability of two novel cell lines, one from Pseudaletia unipuncta (A7S) and one from Danaus plexippus (DpN1), to produce and glycosylate a recombinant protein (secreted human placental alkaline phosphatase, SeAP) was assessed. SeAP produced by Tn5B1–4 cells at a low passage number (<200) was utilized for comparison. The optimal conditions for the production of SeAP by DpN1 cells were defined, and the glycosylation profiles of SeAP produced by the cell lines were quantitatively determined. Both the A7S an...
Glycobiology, 2002
A novel recombinant baculovirus expression vector was used to produce His-tagged human transferrin in a transformed insect cell line (Tn5b4GalT) that constitutively expresses a mammalian b-1,4-galactosyltransferase. This virus encoded the His-tagged human transferrin protein in conventional fashion under the control of the very late polyhedrin promoter. In addition, to enhance the synthesis of galactosylated biantennary N-glycans, this virus encoded human b-1,2-N-acetylglucosaminyltransferase II under the control of an immediate-early (ie1) promoter. Detailed analyses by MALDI-TOF MS, exoglycosidase digestion, and two-dimensional HPLC revealed that the N-glycans on the purified recombinant human transferrin produced by this virus±host system included four different fully galactosylated, biantennary, complex-type glycans. Thus, this study describes a novel baculovirus±host system, which can be used to produce a recombinant glycoprotein with fully galactosylated, biantennary N-glycans.
SweetBac: A New Approach for the Production of Mammalianised Glycoproteins in Insect Cells
PLoS ONE, 2012
Recombinant production of therapeutically active proteins has become a central focus of contemporary life science research. These proteins are often produced in mammalian cells, in order to obtain products with post-translational modifications similar to their natural counterparts. However, in cases where a fast and flexible system for recombinant production of proteins is needed, the use of mammalian cells is limited. The baculoviral insect cell system has proven to be a powerful alternative for the expression of a wide range of recombinant proteins in short time frames. The major drawback of baculoviral systems lies in the inability to perform mammalian-like glycosylation required for the production of therapeutic glycoproteins. In this study we integrated sequences encoding Caenorhabditis elegans N-acetylglucosaminyltransferase II and bovine b1,4-galactosyltransferase I into the backbone of a baculovirus genome. The thereby generated SweetBac virus was subsequently used for the production of the human HIV anti-gp41 antibody 3D6 by integrating heavy and light chain open reading frames into the SweetBac genome. The parallel expression of target genes and glycosyltransferases reduced the yield of secreted antibody. However, the overall expression rate, especially in the recently established Tnao38 cell line, was comparable to that of transient expression in mammalian cells. In order to evaluate the ability of SweetBac to generate mammalian-like N-glycan structures on 3D6 antibody, we performed SDS-PAGE and tested for the presence of terminal galactose using Riccinus communis agglutinin I. The mammalianised variants of 3D6 showed highly specific binding to the lectin, indicating proper functionality. To confirm these results, PNGase A released N-glycans were analyzed by MALDI-TOF-MS and shown to contain structures with mainly one or two terminal galactose residues. Since the presence of specific N-glycans has an impact on antibodies ability to exert different effector functions, we tested the binding to human Fc gamma receptor I present on U937 cells.
Insect cells as hosts for the expression of recombinant glycoproteins
Glycoconjugate journal, 1999
Baculovirus-mediated expression in insect cells has become well-established for the production of recombinant glycoproteins. Its frequent use arises from the relative ease and speed with which a heterologous protein can be expressed on the laboratory scale and the high chance of obtaining a biologically active protein. In addition to Spodoptera frugiperda Sf9 cells, which are probably the most widely used insect cell line, other mainly lepidopteran cell lines are exploited for protein expression. Recombinant baculovirus is the usual vector for the expression of foreign genes but stable transfection of - especially dipteran - insect cells presents an interesting alternative. Insect cells can be grown on serum free media which is an advantage in terms of costs as well as of biosafety. For large scale culture, conditions have been developed which meet the special requirements of insect cells. With regard to protein folding and post-translational processing, insect cells are second only...
Glycoconjugate Journal, 2004
In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N-acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complextype structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N-acetylglucosaminidase that removes a terminal N-acetylglucosamine from the N-glycan. The innermost Nacetylglucosamine residue attached to asparagine residue is also modified with α(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic enzymes responsible for generating the essential donor sugar nucleotide, CMP-N-acetylneuraminic acid, required for sialylation. Inhibition of Nacetylglucosaminidase has also been applied to alter N-glycan processing in insect cells. This review summarizes current knowledge on N-glycan processing in lepidopteran insect cell lines, and recent progress in glycoengineering lepidopteran insect cells to produce glycoproteins containing complex N-glycans.