Mapping the nebular condensates and the chemical composition of the terrestrial planets (original) (raw)
Abstract
Available online xxxx Editor: L. Stixrude Keywords: thermochemistry terrestrial planets condensation of solar nebula chemical composition of Earth
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (24)
- Allegre, C.J., Poirier, J.-P., Humler, E., Hofmann, A.W., 1995. The chemical composition of the Earth. Earth Planet. Sci. Lett. 134, 515-526.
- Anders, E., Ebihara, M., 1982. Solar-system abundances of the elements. Geochim. Cosmochim. Acta 46, 2363-2380.
- Bale, C.W., Chartrand, P., Decterov, S.A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melançon, J., Pelton, A.D., Petersen, S., 2002. FactSage thermochemical software and databases. Calphad 62, 189-228.
- Bond, J.C., Lauretta, D.S., O'Brien, D.P., 2010. Making the Earth: Combining dynamics and chemistry in the Solar System. Icarus 205, 321-337.
- Brearley, A.J., Jones, R.H., 1998. Chondritic meteorites. In: Papike, J.J. (Ed.), Plane- tary Materials. In: Rev. Mineral., vol. 36. The Mineralogical Society of America, Washington, D.C., pp. 3-13-3-98.
- Cameron, A.G.W., Pine, M.R., 1973. Numerical models of the primitive solar nebula. Icarus 18, 377-406.
- Ciesla, F., Lauretta, Dante, 2005. Radial migration and dehydration of phyllosilicates in the solar nebula. Earth Planet. Sci. Lett. 231, 1-8.
- Fabrichnaya, O.B., Saxena, S.K., Richet, P., Westrum, E.F., 2004. Thermodynamic Data, Models, and Phase Diagrams in Multicomponent Oxide Systems. Springer.
- Fedkin, A.V., Grossman, L., 2004. Nebular formation of fayalitic olivine: Ineffective- ness of dust enrichment. In: Lunar and Planetary Science XXXV (Abstract #1823 CD-ROM).
- Fedkin, A.V., Grossman, L., 2006. The fayalite content of chondritic olivine: Obstacle to understanding the condensation of rocky material. In: Lauretta, D.S., Mc- Sween Jr., H.Y. (Eds.), Meteorites and the Early Solar System II. The University of Arizona Press, Tucson, AZ, pp. 279-294.
- Grossman, L., 1972. Condensation in the primitive solar nebula. Geochim. Cos- mochim. Acta 36, 597-619.
- Grossman, L., Fedkin, A.V., Simon, S.B., 2011. FeO in chondritic olivine: implications for fO 2 . In: Workshop on Formation of the First Solids in the Solar System, p. 9035.
- Grossman, L., Fedkin, A.V., Simon, S.B., 2012. Formation of the first oxidized iron in the solar system. Meteorit. Planet. Sci. 47, 2160-2169.
- Hillert, M., Burton, B., Saxena, S.K., Decterov, S.A., Hari Kumar, K.C., Ohtani, H., Aldinger, F., Kussmaul, A., 1997. Thermodynamic modelling of solutions and al- loys. Modelling of oxides. Calphad 21, 247-264.
- Huss, G.R., Rubin, A.E., Grossman, J.N., 2006. Thermal metamorphism in chondrites. In: Lauretta, D.S., McSween Jr., H.Y. (Eds.), Meteorites and the Early Solar Sys- tem II. The University of Arizona Press, Tucson, AZ, pp. 567-586.
- Lewis, J.S., 1972. Metal/silicate fractionation in the solar system. Earth Planet. Sci. Lett. 15, 286-290.
- Lewis, J.S., 1974. The temperature gradient in the solar nebula. Science 186, 440-443.
- Lodders, K., 2003. Solar abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220-1247.
- McSween, H.Y., 1977. Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochim. Cosmochim. Acta 41, 1777-1790.
- Morgan, J.W., Anders, E., 1980. Chemical composition of Earth, Venus and Mercury. Proc. Natl. Acad. Sci. 77, 6973-6977.
- Palme, H., Fegley, B.J., 1990. High-temperature condensation of iron-rich olivine in the solar nebula. Earth Planet. Sci. Lett. 101, 180-195.
- Prieto, C.A., Lambert, D.L., Asplund, M., 2002. A reappraisal of the solar photospheric C/O ratio. Astrophys. J. 573, L137-L140.
- Rietmeijer, F.J.M., 1998. Interplanetary dust particles. In: Papike, J.J. (Ed.), Planetary Materials. In: Rev. Mineral., vol. 36. Mineralogical Society of America, Washing- ton, D.C., pp. 2-1-2-95.
- Ringwood, A.E., 1979. Origin of the Earth and Moon. Springer, New York.