Purification and characterization of a third isoform of myosin I from Acanthamoeba castellanii (original) (raw)

Functional Analysis of Tail Domains of Acanthamoeba Myosin IC by Characterization of Truncation and Deletion Mutants

Journal of Biological Chemistry, 2000

Acanthamoeba myosin IC has a single 129-kDa heavy chain and a single 17-kDa light chain. The heavy chain comprises a 75-kDa catalytic head domain with an ATPsensitive F-actin-binding site, a 3-kDa neck domain, which binds a single 17-kDa light chain, and a 50-kDa tail domain, which binds F-actin in the presence or absence of ATP. The actin-activated MgATPase activity of myosin IC exhibits triphasic actin dependence, apparently as a consequence of the two actin-binding sites, and is regulated by phosphorylation of Ser-329 in the head. The 50-kDa tail consists of a basic domain, a glycine/proline/alanine-rich (GPA) domain, and a Src homology 3 (SH3) domain, often referred to as tail homology (TH)-1, -2, and -3 domains, respectively. The SH3 domain divides the TH-3 domain into GPA-1 and GPA-2. To define the functions of the tail domains more precisely, we determined the properties of expressed wild type and six mutant myosins, an SH3 deletion mutant and five mutants truncated at the C terminus of the SH3, GPA-2, TH-1, neck and head domains, respectively. We found that both the TH-1 and GPA-2 domains bind Factin in the presence of ATP. Only the mutants that retained an actin-binding site in the tail exhibited triphasic actin-dependent MgATPase activity, in agreement with the F-actin-cross-linking model, but truncation reduced the MgATPase activity at both low and high actin concentrations. Deletion of the SH3 domain had no effect. Also, none of the tail domains, including the SH3 domain, affected either the K m or V max for the phosphorylation of Ser-329 by myosin I heavy chain kinase.

Structural invariance of constitutively active and inactive mutants of Acanthamoeba myosin IC bound to F-actin in the rigor and ADP-bound states

Proceedings of the National Academy of Sciences, 1998

The three single-headed monomeric myosin I isozymes of Acanthamoeba castellanii (AMIs)—AMIA, AMIB, and AMIC—are among the best-studied of all myosins. We have used AMIC to study structural correlates of myosin’s actin-activated ATPase. This activity is normally controlled by phosphorylation of Ser-329, but AMIC may be switched into constitutively active or inactive states by substituting this residue with Glu or Ala, respectively. To determine whether activation status is reflected in structural differences in the mode of attachment of myosin to actin, these mutant myosins were bound to actin filaments in the absence of nucleotide (rigor state) and visualized at 24-Å resolution by using cryoelectron microscopy and image reconstruction. No such difference was observed. Consequently, we suggest that regulation may be affected not by altering the static (time-averaged) structure of AMIC but by modulating its dynamic properties, i.e., molecular breathing. The tail domain of vertebrate i...

Novel Mode of Cooperative Binding between Myosin and Mg2+-actin Filaments in the Presence of Low Concentrations of ATP

Journal of Molecular Biology, 2009

Cooperative interaction between myosin and actin filaments has been detected by a number of different methods, and has been suggested to have some role in force generation by the actomyosin motor. In this study, we observed the binding of myosin to actin filaments directly using fluorescence microscopy to analyze the mechanism of the cooperative interaction in more detail. For this purpose, we prepared fluorescently labeled heavy meromyosin (HMM) of rabbit skeletal muscle myosin and Dictyostelium myosin II. Both types of HMMs formed fluorescent clusters along actin filaments when added at substoichiometric amounts. Quantitative analysis of the fluorescence intensity of the HMM clusters revealed that there are two distinct types of cooperative binding. The stronger form was observed along Ca 2+-actin filaments with substoichiometric amounts of bound phalloidin, in which the density of HMM molecules in the clusters was comparable to full decoration. The novel, weaker form was observed along Mg 2+-actin filaments with and without stoichiometric amounts of phalloidin. HMM density in the clusters of the weaker form was several-fold lower than full decoration. The weak cooperative binding required sub-micromolar ATP, and did not occur in the absence of nucleotides or in the presence of ADP and ADP-Vi. The G680V mutant of Dictyostelium HMM, which overoccupies the ADP-Pi bound state in the presence of actin filaments and ATP, also formed clusters along Mg 2+-actin filaments, suggesting that the weak cooperative binding of HMM to actin filaments occurs or initiates at an intermediate state of the actomyosin-ADP-Pi complex other than that attained by adding ADP-Vi.

A Novel Mammalian Myosin I from Rat with an SH3 Domain Localizes to Con A-Inducible, F-Actin-Rich Structures at Cell-Cell Contacts

1995

In an effort to determine diversity and function of mammalian myosin I molecules, we report here the cloning and characterization of myr 3 (third unconventional myosin from rat), a novel mammalian myosin I from rat tissues that is related to myosin I molecules from protozoa. Like the protozoan myosin I molecules, myr 3 consists of a myosin head dOmain, a single light chain binding motif, and a tail region that includes a COOH-terminal SH3 domain. However, myr 3 lacks the regulatory phosphorylation site present in the head domain of protozoan myosin I molecules. Evidence was obtained that the COOH terminus of the tail domain is involved in regulating F-actin binding activity of the NH2-terminal head domain. The light chain of myr 3 was identified as the Ca 2+binding protein calmodulin. Northern blot and immunoblot analyses revealed that myr 3 is expressed in many tissues and cell lines. Immunofluorescence studies with anti-myr 3 antibodies in NRK cells demonstrated that myr 3 is localized in the cytoplasm and in elongated structures at regions of cell-cell contact. These elongated structures contained F-actin and o~-actinin but were devoid of vinculin. Incubation of NRK cells with Con A stimulated the formation of myr 3-containing structures along cell-cell contacts. These results suggest for myr 3 a function mediated by cell-cell contact. M YOSIN I molecules represent a subfamily of the rapidly expanding myosin superfamily. Like conventional muscle myosin (myosin II), they exhibit an NH2-terminal head region, a light chain binding region, and a COOH-terminal tail region. The head region is relatively well conserved in all myosins; it comprises ATP-and actin-binding sites and exhibits actin-activated ATPase activity (Pollard et al., 1991). The head region and the light chain-binding region with the associated light chain(s) are sufficient to produce directed force along actin filaments (Toyoshima et al., 1987). The tail regions of myosin I molecules, in contrast to the tail regions of conventional muscle myosin (myosin II), do not dimerize or form filaments. For some of the myosin I tails, it has been demonstrated that they bind to membranes (Adams and Pollard, 1989; Miyata et al., 1989; Hayden et al., 1990). All myosin I tails share a diagnostic myosin I tail homology motif possibly involved in membrane binding (Btihler et al., 1994). A subgroup of myosin I molecules ("amoeboid") identified in Acanthamoeba castellanii and Dictyostelium discoideum contain in their tail regions a Src homology 3 (SH3) domain.

Functional Characterization of the Secondary Actin Binding Site of Myosin II

Biochemistry, 1999

The role of the interaction between actin and the secondary actin binding site of myosin (segment 565-579 of rabbit skeletal muscle myosin, referred to as loop 3 in this work) has been studied with proteolytically generated smooth and skeletal muscle myosin subfragment 1 and recombinant Dictyostelium discoideum myosin II motor domain constructs. Carbodiimide-induced cross-linking between filamentous actin and myosin loop 3 took place only with the motor domain of skeletal muscle myosin and not with those of smooth muscle or D. discoideum myosin II. Chimeric constructs of the D. discoideum myosin motor domain containing loop 3 of either human skeletal muscle or nonmuscle myosin were generated. Significant actin cross-linking to the loop 3 region was obtained only with the skeletal muscle chimera both in the rigor and in the weak binding states, i.e., in the absence and in the presence of ATP analogues. Thrombin degradation of the cross-linked products was used to confirm the cross-linking site of myosin loop 3 within the actin segment 1-28. The skeletal muscle and nonmuscle myosin chimera showed a 4-6-fold increase in their actin dissociation constant, due to a significant increase in the rate for actin dissociation (k -A ) with no significant change in the rate for actin binding (k +A ). The actin-activated ATPase activity was not affected by the substitutions in the chimeric constructs. These results suggest that actin interaction with the secondary actin binding site of myosin is specific for the loop 3 sequence of striated muscle myosin isoforms but is apparently not essential either for the formation of a high affinity actinmyosin interface or for the modulation of actomyosin ATPase activity.

Interaction of Myosin Subfragment 1 with Forms of Monomeric Actin †

Biochemistry, 2003

The ability of myosin subfragment 1 to interact with monomeric actin complexed to sequestering proteins was tested by a number of different techniques such as affinity absorption, chemical crosslinking, fluorescence titration, and competition procedures. For affinity absorption, actin was attached to agarose immobilized DNase I. Both chymotryptic subfragment 1 isoforms (S1A1 and S1A2) were retained by this affinity matrix. Fluorescence titration employing pyrenyl-actin in complex with deoxyribonuclease I (DNase I) or thymosin 4 demonstrated S1 binding to these actin complexes. A K D of 5 × 10 -8 M for S1A1 binding to the actin-DNase I complex was determined. Fluorescence titration did not indicate binding of S1 to actin in complex with gelsolin segment 1 (G1) or vitamin D-binding protein (DBP). However, fluorescence competition experiments and analysis of tryptic cleavage patterns of S1 indicated its interaction with actin in complex with DBP or G1. Formation of the ternary DNase I-acto-S1 complex was directly demonstrated by sucrose density sedimentation. S1 binding to G-actin was found to be sensitive to ATP and an increase in ionic strength. Actin fixed in its monomeric state by DNase I was unable to significantly stimulate the Mg 2+ -dependent S1-ATPase activity. Both wild-type and a mutant of Dictyostelium discoideum myosin II subfragment 1 containing 12 additional lysine residues within an insertion of 20 residues into loop 2 (K12/20-Q532E) were found to also interact with actin-DNase I complex. Binding of the K12/20-Q532E mutant to the actin-DNase I complex occurred with higher affinity than wild-type S1 and was less sensitive to mono-and divalent cations. subfragment 1; S1A1, S1 containing the M r 21 000 light chain; S1A2, S1 containing the Mr 17 000 light chain; T 4, thymosin 4.