Semigroup Algebras That Are Principal Ideal Rings (original) (raw)

Matrix semigroups over semirings

International Journal of Algebra and Computation

We study properties determined by idempotents in the following families of matrix semigroups over a semiring [Formula: see text]: the full matrix semigroup [Formula: see text], the semigroup [Formula: see text] consisting of upper triangular matrices, and the semigroup [Formula: see text] consisting of all unitriangular matrices. Il’in has shown that (for [Formula: see text]) the semigroup [Formula: see text] is regular if and only if [Formula: see text] is a regular ring. We show that [Formula: see text] is regular if and only if [Formula: see text] and the multiplicative semigroup of [Formula: see text] is regular. The notions of being abundant or Fountain (formerly, weakly abundant) are weaker than being regular but are also defined in terms of idempotents, namely, every class of certain equivalence relations must contain an idempotent. Each of [Formula: see text], [Formula: see text] and [Formula: see text] admits a natural anti-isomorphism allowing us to characterise abundance ...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.