Wide-Field Retinotopy Defines Human Cortical Visual Area V6 (original) (raw)

Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans

Science, 2001

The internal organization of a higher level visual area in the human parietal cortex was mapped. Functional magnetic resonance images were acquired while the polar angle of a peripheral target for a delayed saccade was gradually changed. A region in the superior parietal cortex showed robust retinotopic mapping of the remembered target angle. The map reversed when the direction of rotation of the remembered targets was reversed and persisted unchanged when study participants detected rare target reappearances while maintaining fixation, or when the eccentricity of successive remembered targets was unpredictable. This region may correspond to the lateral intraparietal area in macaque monkeys.

The Retinotopic Organization of Macaque Occipitotemporal Cortex Anterior to V4 and Caudoventral to the Middle Temporal (MT) Cluster

The retinotopic organization of macaque occipitotemporal cortex rostral to area V4 and caudorostral to the recently described middle temporal (MT) cluster of the monkey (Kolster et al., 2009) is not well established. The proposed number of areas within this region varies from one to four, underscoring the ambiguity concerning the functional organization in this region of extrastriate cortex. We used phase-encoded retinotopic functional MRI mapping methods to reveal the functional topography of this cortical domain. Polar-angle maps showed one complete hemifield representation bordering area V4 anteriorly, split into dorsal and ventral counterparts corresponding to the lower and upper visual field quadrants, respectively. The location of this hemifield representation corresponds to area V4A. More rostroventrally, we identified three other complete hemifield representations. Two of these correspond to the dorsal and the ventral posterior inferotemporal areas (PITd and PITv, respectively) as identified in the Felleman and Van Essen (1991) scheme. The third representation has been tentatively named dorsal occipitotemporal area (OTd). Areas V4A, PITd, PITv, and OTd share a central visual field representation, similar to the areas constituting the MT cluster. Furthermore, they vary widely in size and represent the complete contralateral visual field. Functionally, these four areas show little motion sensitivity, unlike those of the MT cluster, and two of them, OTd and PITd, displayed pronounced two-dimensional shape sensitivity. In general, these results suggest that retinotopically organized tissue extends farther into rostral occipitotemporal cortex of the monkey than generally assumed.

Topography of projections to posterior cortical areas from the macaque frontal eye fields

Journal of Comparative Neurology, 1995

Frontal eye field (FEF) projections to posterior cortical areas were mapped by autoradiography of tritiated amino acids (Leu, Pro) in six macaque monkeys. In three monkeys, the large saccade part of the FEF (IFEF) was identified by microstimulation and injected with tracers. In a fourth monkey, the small saccade part of the FEF (sFEF) was identified by microstimulation and injected with tracer. Tracer injections were placed into the sFEF region of two other monkeys using anatomical landmarks. The IFEF and sFEF generally had distinct and largely segregated projections to posterior cortical areas, and the overall pattern of labeling in visual areas with established topology indicates that IFEF neurons preferentially project to areas having large and eccentric receptive fields, whereas sFEF neurons project to areas having smaller, more centrally located fields. The terminal fields from the sFEF were more widespread than those from IFEF. Projections from sFEF terminated in the lateral intraparietal area (LIP), the ventral intraparietal area (VIP), and the parietal part of visual area V3A, in the fundus of the superior temporal visual area (TST), the middle temporal area (MT), the medial superior temporal area (MST), the temporal part of visual area V4, the inferior temporal area (IT), and the temporal-occipital area (TEO) and in occipital visual areas V2, V3, and V4. Projections from IFEF terminated in parietal areas 7a, LIP, and VIP and the medial part of parietal area PE; in temporal areas MST and the superior temporal polysensory area (STP); and in occipital area V2 and posterior cingulate area 23b. Projections from IFEF and sFEF appeared to terminate in different parts of common target areas in MST, LIP, and V2. The topography of IFEF and sFEF projections to LIP suggests that this posterior eye field may also be organized by saccade amplitude. Most terminal labeling from FEF injections was bilaminar to layers I and V/VI, but labeling in area LIP, area MT, the medial part of area PE, and area 23b was columnar-form to all layers. © 1995 Wiley-Liss, Inc.

Mapping striate and extrastriate visual areas in human cerebral cortex

Proceedings of the National Academy of Sciences of the United States of America, 1996

Functional magnetic resonance imaging (fMRI) was used to identify and map the representation of the visual field in seven areas of human cerebral cortex and to identify at least two additional visually responsive regions. The cortical locations of neurons responding to stimulation along the vertical or horizontal visual field meridia were charted on three-dimensional models of the cortex and on unfolded maps of the cortical surface. These maps were used to identify the borders among areas that would be topographically homologous to areas V1, V2, V3, VP, and parts of V3A and V4 of the macaque monkey. Visually responsive areas homologous to the middle temporal/medial superior temporal area complex and unidentified parietal visual areas were also observed. The topography of the visual areas identified thus far is consistent with the organization in macaque monkeys. However, these and other findings suggest that human and simian cortical organization may begin to differ in extrastriate ...

The Human Homologue of Macaque Area V6A

Journal of Vision, 2012

In macaque monkeys, V6A is a visuomotor area located in the anterior bank of the POs, dorsal and anterior to retinotopically-organized extrastriate area V6 (Galletti et al., 1996). Unlike V6, V6A represents both contraand ipsilateral visual fields and is broadly retinotopically organized (Galletti et al., 1999b). The contralateral lower visual field is over-represented in V6A. The central 20°-30°of the visual field is mainly represented dorsally (V6Ad) and the periphery ventrally (V6Av), at the border with V6. Both sectors of area V6A contain arm movement-related cells, active during spatially-directed reaching movements (Gamberini et al., 2011). In humans, we previously mapped the retinotopic organization of area V6 (Pitzalis et al., 2006). Here, using phase-encoded fMRI, cortical surface-based analysis and wide-field retinotopic mapping, we define a new cortical region that borders V6 anteriorly and shows a clear over-representation of the contralateral lower visual field and the periphery. As with macaque V6A, the eccentricity increases moving ventrally within the area. The new region contains a non-mirror-image representation of the visual field. Functional mapping reveals that, as in macaque V6A, the new region, but not the nearby area V6, responds during finger pointing and reaching movements. Based on similarity in position, retinotopic properties, functional organization and relationship with the neighboring extrastriate visual areas, we propose that the new cortical region is the human homologue of macaque area V6A.

Location of human face-selective cortex with respect to retinotopic areas

Human Brain Mapping, 1999

Functional Magnetic Resonance Imaging (fMRI) was used to identify a small area in the human posterior fusiform gyrus that responds selectively to faces (PF). In the same subjects, phase-encoded rotating and expanding checkerboards were used with fMRI to identify the retinotopic visual areas V1, V2, V3, V3A, VP and V4v. PF was found to lie anterior to area V4v, with a small gap present between them. Further recordings in some of the same subjects used moving low-contrast rings to identify the visual motion area MT. PF was found to lie ventral to MT. In addition, preliminary evidence was found using fMRI for a small area that responded to inanimate objects but not to faces in the collateral sulcus medial to PF. The retinotopic visual areas and MT responded equally to faces, control randomized stimuli, and objects. Weakly face-selective responses were also found in ventrolateral occipitotemporal cortex anterior to V4v, as well as in the middle temporal gyrus anterior to MT. We conclude that the fusiform face area in humans lies in non-retinotopic visual association cortex of the ventral form-processing stream, in an area that may be roughly homologous in location to area TF or CITv in monkeys.

Controversies about the visual areas located at the anterior border of area V2 in primates

Visual Neuroscience, 2015

Anatomical and electrophysiological studies have provided us with detailed information regarding the extent and topography of the primary (V1) and secondary (V2) visual areas in primates. The consensus about the V1 and V2 maps, however, is in sharp contrast with controversies regarding the organization of the cortical areas lying immediately rostral to V2. In this review, we address the contentious issue of the extent of the third visual area (V3). Specifically, we will argue for the existence of both ventral (V3v) and dorsal (V3d) segments of V3, which are located, respectively, adjacent to the anterior border of ventral and dorsal V2. V3v and V3d would together constitute a single functional area with a complete representation of both upper and lower visual hemifields. Another contentious issue is the organization of the parietal-occipital (PO) area, which also borders the rostral edge of the medial portion of dorsal V2. Different from V1, V2, and V3, which exhibit a topography ba...

Functional and anatomical properties of human visual cortical fields

Vision research, 2015

Human visual cortical fields (VCFs) vary in size and anatomical location across individual subjects. Here, we used functional magnetic resonance imaging (fMRI) with retinotopic stimulation to identify VCFs on the cortical surface. We found that aligning and averaging VCF activations across the two hemispheres provided clear delineation of multiple retinotopic fields in visual cortex. The results show that VCFs have consistent locations and extents in different subjects that provide stable and accurate landmarks for functional and anatomical mapping. Interhemispheric comparisons revealed minor differences in polar angle and eccentricity tuning in comparable VCFs in the left and right hemisphere, and somewhat greater intersubject variability in the right than left hemisphere. We then used the functional boundaries to characterize the anatomical properties of VCFs, including fractional anisotropy (FA), magnetization transfer ratio (MTR) and the ratio of T1W and T2W images and found sig...

The cortical visual area V6: brain location and visual topography

European Journal of Neuroscience, 1999

The brain location, extent and functional organization of the cortical visual area V6A was investigated in macaque monkeys by using single cell recording techniques in awake, behaving animals. Six hemispheres of four animals were studied. Area V6A occupies a horseshoe-like region of cortex in the caudalmost part of the superior parietal lobule. It extends from the medial surface of the brain, through the anterior bank of the parieto-occipital sulcus, up to the most lateral part of the fundus of the same sulcus. Area V6A borders on areas V6 ventrally, PEc dorsally, PGm medially and MIP laterally. Of 1348 neurons recorded in V6A, 61% were visual and 39% non-visual in nature. The visual neurons were particularly sensitive to orientation and direction of movement of visual stimuli. The inferior contralateral quadrant was the most represented one. Visual receptive fields were also found in the inferior ipsilateral quadrant and in the upper visual field. Receptive fields were on average smaller in the lower visual field than in the upper one. Both central and peripheral parts of the visual field were represented. Large parts of the visual field were represented in small regions of area V6A, and the same regions of the visual field were re-represented many times in different parts of this area, without any apparent topographical order. The only reliable sign of retinotopic organization was the predominance of central representation dorsally and far periphery ventrally. The functional organization of area V6A is discussed in the view that this area could be involved in the control of reaching out and grasping objects.

The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors

Journal of Neuroscience, 2010

Although there is general agreement that the human middle temporal (MT)/V5ϩ complex corresponds to monkey area MT/V5 proper plus a number of neighboring motion-sensitive areas, the identification of human MT/V5 within the complex has proven difficult. Here, we have used functional magnetic resonance imaging and the retinotopic mapping technique, which has very recently disclosed the organization of the visual field maps within the monkey MT/V5 cluster. We observed a retinotopic organization in humans very similar to that documented in monkeys: an MT/V5 cluster that includes areas MT/V5, pMSTv (putative ventral part of the medial superior temporal area), pFST (putative fundus of the superior temporal area), and pV4t (putative V4 transitional zone), and neighbors a more ventral putative human posterior inferior temporal area (phPIT) cluster. The four areas in the MT/V5 cluster and the two areas in the phPIT cluster each represent the complete contralateral hemifield. The complete MT/V5 cluster comprises 70% of the motion localizer activation. Human MT/V5 is located in the region bound by lateral, anterior, and inferior occipital sulci and occupies only one-fifth of the motion complex. It shares the basic functional properties of its monkey homolog: receptive field size relative to other areas, response to moving and static stimuli, as well as sensitivity to three-dimensional structure from motion. Functional properties sharply distinguish the MT/V5 cluster from its immediate neighbors in the phPIT cluster and the LO (lateral occipital) regions. Together with similarities in retinotopic organization and topological neighborhood, the functional properties suggest that MT/V5 in human and macaque cortex are homologous. :9801-9820 • 9801 cluster including MT/V5, putative MSTv (pMSTv), putative FST (pFST), and putative V4t (pV4t). Furthermore, functional properties confirm the similarity of human and monkey MT/V5 and indicate that shape sensitivity indeed differentiates among areas of the cluster. These results further suggest that the visual cortex of humans, as in other primates, includes a four-member MT/V5 cluster.