Extraction of Permittivity and Permeability for Ferrites and Flexible Magnetodielectric Materials Using a Genetic Algorithm (original) (raw)
2015, IEEE Transactions on Electromagnetic Compatibility
A hybrid approach, based on the two-dimensional finite-element method (2-D-FEM) and a genetic algorithm (GA) optimization, is used to extract relative permittivity and permeability of ferrites and flexible magnetodielectric composite materials over wide frequency bands. S-parameters of a material under test (MUT) placed into a coaxial fixture are measured by a vector network analyzer and simulated using the 2-D-FEM code. The GA optimization procedure is then used to minimize the discrepancies between the measured and simulated S-parameters by iteratively searching the possible best permittivity and permeability. Multiterm Debye models of wideband complex permittivity and permeability are employed here for a frequency-dispersive MUT. This greatly reduces the number of unknowns in the GA optimization. The proposed method is tested with PTFE and a virtual magnetic material.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.