Universal and specific quantitative detection of botulinum neurotoxin genes (original) (raw)
Related papers
Journal of Medical Microbiology, 2010
Clostridium botulinum is the aetiological agent of botulism, a disease marked by flaccid paralysis that can progress to asphyxiation and death. This species is defined by the production of one of the botulinum neurotoxins (BoNTs), which are the most potent toxins known. Because of their potency, these toxins have the potential to be used as biological weapons, and therefore C. botulinum has been classified as a category A select agent. There are four related but antigenically distinct BoNT types that cause disease in humans, A, B, E and F. The mouse bioassay is the current gold standard by which BoNTs are confirmed. However, this method is expensive, slow and labour-intensive. Although PCR-based assays have been used extensively for the detection of BoNT-producing bacteria in food, animals and faecal samples, and recently to help diagnose disease in humans, no real-time quantitative PCR (qPCR) assay has yet been developed that can identify and differentiate all four BoNTs that cause...
Applied and Environmental Microbiology, 2009
Botulinum neurotoxin (BoNT), the most toxic substance known, is produced by the spore-forming bacterium Clostridium botulinum and, in rare cases, also by some strains of Clostridium butyricum and Clostridium baratii. The standard procedure for definitive detection of BoNT-producing clostridia is a culture method combined with neurotoxin detection using a standard mouse bioassay (SMB). The SMB is highly sensitive and specific, but it is expensive and time-consuming and there are ethical concerns due to use of laboratory animals. PCR provides a rapid alternative for initial screening for BoNT-producing clostridia. In this study, a previously described multiplex PCR assay was modified to detect all type A, B, E, and F neurotoxin genes in isolated strains and in clinical, food, environmental samples. This assay includes an internal amplification control. The effectiveness of the multiplex PCR method for detecting clostridia possessing type A, B, E, and F neurotoxin genes was evaluated by direct comparison with the SMB. This method showed 100% inclusivity and 100% exclusivity when 182 BoNT-producing clostridia and 21 other bacterial strains were used. The relative accuracy of the multiplex PCR and SMB was evaluated using 532 clinical, food, and environmental samples and was estimated to be 99.2%. The multiplex PCR was also used to investigate 110 freshly collected food and environmental samples, and 4 of the 110 samples (3.6%) were positive for BoNT-encoding genes.
Applied and Environmental Microbiology, 2004
Denaturing high-performance liquid chromatography (DHPLC) is a recently developed technique for rapid screening of nucleotide polymorphisms in PCR products. We used this technique for the identification of type A, B, E, and F botulinum neurotoxin genes. PCR products amplified from a conserved region of the type A, B, E, and F botulinum toxin genes from Clostridium botulinum, neurotoxigenic C. butyricum type E, and C. baratii type F strains were subjected to both DHPLC analysis and sequencing. Unique DHPLC peak profiles were obtained with each different type of botulinum toxin gene fragment, consistent with nucleotide differences observed in the related sequences. We then evaluated the ability of this technique to identify botulinal neurotoxigenic organisms at the genus and species level. A specific short region of the 16S rRNA gene which contains genus-specific and in some cases species-specific heterogeneity was amplified from botulinum neurotoxigenic clostridia and from different food-borne pathogens and subjected to DHPLC analysis. Different peak profiles were obtained for each genus and species, demonstrating that the technique could be a reliable alternative to sequencing for the rapid identification of food-borne pathogens, specifically of botulinal neurotoxigenic clostridia most frequently implicated in human botulism.
European Food Research and Technology, 2008
In this work, two PCR-based methods have been developed for the detection of Clostridium botulinum strains carrying the gene coding for C. botulinum neurotoxin C (BoNTC) responsible for avian botulism. Both methods are based on the same ampliWcation primers designed using multiple sequence alignments between toxin C coding sequences from DNA sequence databases. The Wrst is a real-time PCR method, using a Taqman-MGB probe. The second uses conventional end-point PCR, followed by capillary gel electrophoresis with laser-induced Xuorescence detection (CGE-LIF). A comparison between both methods has been established for the individual and simultaneous detection of toxin C (BONTC) or bacterial 16S (BACT) sequences from C. botulinum. The results indicate that, in general, the same sensitivity was achieved by using RT-PCR and PCR-CGE-LIF allowing the detection of both C. botulinum amplicons from concentrations as low as 7 £ 10 ¡5 g/ml of total genomic DNA. Some other features from RT-PCR and CGE-LIF are also critically discussed in this work, including quantiWcation capability, size determination, analysis speed and identiWcation strategies, to provide enough information to adequately select the best analytical technique in each case.
Detection of genes encoding botulinum neurotoxins types A to E by polymerase chain reaction
Applied and Environmental Microbiology
The polymerase chain reaction (PCR) was used as the basis for the development of highly sensitive and specific diagnostic tests for organisms harboring botulinum neurotoxin type A through E genes. Synthetic DNA primers were selected from nucleic acid sequence data for Clostridium botulinum neurotoxins. Individual components of the PCR for each serotype (serotypes A through E) were adjusted for optimal amplification of the target fragment. Each PCR assay was tested with organisms expressing each of the botulinum neurotoxin types (types A through G), Clostridium tetani, genetically related nontoxigenic organisms, and unrelated strains. Each assay was specific for the intended target. The PCR reliably identified multiple strains having the same neurotoxin type. The sensitivity of the test was determined with different concentrations of genomic DNA from strains producing each toxin type. As little as 10 fg of DNA (approximately three clostridial cells) was detected. C. botulinum neurotoxin types A, B, and E, which are most commonly associated with human botulism, could be amplified from crude DNA extracts, from vegetative cells, and from spore preparations. This suggests that there is great potential for the PCR in the identification and detection of botulinum neurotoxin-producing strains.