C-Jun N-terminal kinase is required for phorbol ester- and thapsigargin-induced apoptosis in the androgen responsive prostate cancer cell line LNCaP (original) (raw)
Antiandrogen-induced cell death in LNCaP human prostate cancer cells
Cell Death and Differentiation, 2003
Antiandrogens such as Casodex (Bicalutamide) are designed to treat advance stage prostate cancer by interfering with androgen receptor-mediated cell survival and by initiating cell death. Treatment of androgen sensitive, non-metastatic LNCaP human prostate cancer cells with 0-100 lM Casodex or 0-10 ng/ml TNF-a induces cell death in 20-60% of the cells by 48 h in a dose-dependent manner. In cells treated with TNFa, this is accompanied by the loss of mitochondrial membrane potential (DW m ) and cell adhesion. In contrast, cells treated with Casodex display loss of cell adhesion, but sustained mitochondrial dehydrogenase activity. Overexpression of Bcl-2 in LNCaP cells attenuates the induction of cell death by TNF-a but not Casodex, suggesting that mitochondria depolarization is not required for the induction of cell death by Casodex. While both TNF-a and Casodex-induced release of cytochrome c in LNCaP cell is predominantely associated with the translocation and cleavage of Bax, our data also suggest that Casodex induces cell death by acting on components downstream of decline of DW m and upstream of cytochrome c release. Furthermore, while induction of both caspase-3 and caspase-8 activities are observed in TNF-a and Casodex-treated cells, a novel cleavage product of procaspase-8 is seen in Casodex-treated cells. Taken together, these data support the hypothesis that Casodex induces cell death by a pathway that is independent of changes in DW m and Bcl-2 actions and results in an extended lag phase of cell survival that may promote the induction of an invasive phenotype after treatment.
Cancer Biology & Therapy, 2004
TPCK is widely used as an inhibitor of chymotrypsin-like proteases but has recently been identified as an inhibitor of the PDK1/Akt pathway. In this study, we show that TPCK inhibits TRAIL-induced caspase activity but potentiates wortmannin-dependent caspase activity in prostatic carcinoma cell lines. The inhibitory activity of TPCK was found to be death ligand-specific since TPCK inhibits TRAIL-mediated caspase activity but does not affect Fas-induced caspase activity. Our data also show that impaired TRAIL-DISC formation in the presence of TPCK is responsible for caspase inhibition. Further, TPCK induces p53 expression and inhibits the PDK1/Akt pathway resulting in BAD dephosphorylation, and the release of cytochrome c and Smac/DIABLO from mitochondria. TPCK also selectively decreases the levels of androgen receptor and caspase-2 whereas it does not change the levels of other proteins (caspases-3, -7, -8, -9; heat shock proteins 27, 70, 90). Finally, TPCK-induced degradation of caspase-2 is protected by Bcl-2 overexpression, apparently by an adapter protein since direct interaction between caspase-2 and Bcl-2 was not detected. Together, these features suggest that TPCK could be used as a therapeutic agent for treatment of those tumor cells that are resistant to ligand-induced treatment because of aberrant signaling pathways downstream of the DISC.
Chemico-Biological Interactions, 2001
Cytotoxic lipid peroxides such as 4-hydroxy-2-nonenal (HNE) are produced when cells are exposed to toxic chemicals. However, the mechanism by which HNE induces cell death has been poorly understood. In this study, we investigated the molecular mechanism of HNE-induced apoptosis in PC12 cells by measuring the activities of the mitogen-activated protein (MAP) kinases involved in early signal transduction pathways. Within 15 -30 min after HNE treatment, c-Jun N-terminal protein kinase (JNK) was maximally activated, before returning to control level after 1 h post-treatment. In contrast, activities of extracellular signal regulated kinase (ERK) and p38 MAP kinase remained unchanged from their basal levels. SEK1, an upstream kinase of JNK, was also activated (phosphorylated) within 5 min after HNE treatment and remained activated for up to 60 min. Marked activation of the JNK pathway through SEK1 was demonstrated by the transient transfection of cDNA for wild type SEK1 and JNK into COS-7 cells. Furthermore, significant reductions in JNK activation and HNE-induced cell death were observed when the dominant negative mutant of SEK1 was co-transfected with JNK. Pretreatment of PC12 cells with a survival promoting agent, 8-(4-chlorophenylthio)-cAMP, prevented both the HNE-induced JNK activation and apop : S 0 0 0 9 -2 7 9 7 ( 0 0 ) 0 0 2 4 7 -7 tosis. Nonaldehyde, a nontoxic aldehyde, caused neither apoptosis nor JNK activation. Pretreatment of PC12 cells with SB203580, a specific inhibitor of p38 MAP kinase, had no effect on HNE-induced apoptosis. All these data suggest that the HNE-mediated apoptosis of PC12 cells is likely to be mediated through the selective activation of the SEK1-JNK pathway without activation of ERK or p38 MAP kinase.
Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research, 1996
Others have reported that the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA), an activator and down-regulator of most protein kinase C (PKC) isozymes, can induce apoptotic cell death of androgen-sensitive LNCaP but not androgen-insensitive PC-3 or DU 145 human prostate cancer cells. As a first step toward uncovering the mechanism by which TPA induces apoptosis of LNCaP cells, we quantified expression of PKC isozyme mRNAs in unmodified and TPA-resistant LNCaP cells and in naturally TPA-resistant PC-3, PC-3M, and DU 145 cells. All of the cell lines and normal prostate expressed RNAs for PKC alpha, delta, epsilon, eta, and mu; only DU 145 cells and normal prostate expressed PKC beta and theta RNAs, and none expressed PKC gamma. The amount of PKC alpha RNA and protein was 6- to 38-fold lower, and PKC mu RNA was 4.5- to 16.5-fold higher in unmodified and TPA-resistant LNCaP cells than in the androgen-independent cells. We examined the effects of TPA on PKC alpha and mu mRNA lev...
Journal of Biological Chemistry, 2000
Phorbol esters, the activators of protein kinase C (PKC), induce apoptosis in androgen-sensitive LNCaP prostate cancer cells. The role of individual PKC isozymes as mediators of this effect has not been thoroughly examined to date. To study the involvement of the novel isozyme PKC␦, we used a replication-deficient adenovirus (PKC␦AdV), which allowed for a tightly controlled expression of PKC␦ in LNCaP cells. A significant reduction in cell number was observed after infection of LNCaP cells with PKC␦AdV. Overexpression of PKC␦ markedly enhanced the apoptotic effect of phorbol 12myristate 13-acetate in LNCaP cells. PKC␦-mediated apoptosis was substantially reduced by the pan-caspase inhibitor z-VAD and by Bcl-2 overexpression. Importantly, and contrary to other cell types, PKC␦-mediated apoptosis does not involve its proteolytic cleavage by caspase-3, suggesting that allosteric activation of PKC␦ is sufficient to trigger apoptosis in LNCaP cells. In addition, phorbol ester-induced apoptosis was blocked by a kinase-deficient mutant of PKC␦, supporting the concept that PKC␦ plays an important role in the regulation of apoptotic cell death in LNCaP prostate cancer cells.
c-Jun NH2-terminal Kinase Promotes Apoptosis by Down-regulating the Transcriptional Corepressor CtBP
Journal of Biological Chemistry, 2006
Genetic knock out of the transcriptional co-repressor carboxyl-terminal-binding protein (CtBP) in mouse embryonic fibroblasts results in up-regulation of several genes involved in apoptosis. We predicted, therefore, that a propensity toward apoptosis might be regulated through changes in cellular CtBP levels. Previously, we have identified the homeodomain-interacting protein kinase 2 as such a regulator and demonstrated that HIPK2 activation causes Ser-422 phosphorylation and degradation of CtBP. In this study, we found that c-Jun NH 2-terminal kinase 1 activation triggered CtBP phosphorylation on Ser-422 and subsequent degradation, inducing p53-independent apoptosis in human lung cancer cells. JNK1 has previously been linked to UV-directed apoptosis. Expression of MKK7-JNK1 or exposure to UV irradiation reduced cellular levels of CtBP via a proteasome-mediated pathway. This effect was prevented by JNK1 deficiency. In addition, sustained activation of the JNK1 pathway by cisplatin similarly triggered CtBP degradation. These findings provide a novel target for chemotherapy in cancers lacking p53.
Cancer research, 2003
12-O-tetradecanoylphorbolacetate (TPA) influences proliferation, differentiation, and apoptosis in a variety of cells including prostate cancer cells. Here, we show that androgen treatment potentiates TPA-induced apoptosis in androgen-sensitive prostate cancer LNCaP cells but not in androgen-independent prostate cancer cell lines DU145 and PC-3. The use of the antiandrogen bicalutamide (Casodex) rescued LNCaP cells from 5-alpha-dihydrotestosterone (DHT)/TPA-induced apoptosis, suggesting that DHT/TPA-induced apoptosis is mediated by androgen/androgen receptor (AR). In addition, a caspase-3 inhibitor (Ac-DEVD-CHO) reduced the level of apoptosis, suggesting that DHT/TPA-mediated apoptosis occurs through a caspase-3-dependent pathway. A functional reporter assay using nuclear factor (NF) kappaB-luciferase and an electromobility gel shift assay showed that DHT suppressed NFkappaB activity. In addition, apoptosis mediated by combined DHT/TPA treatment was abrogated by overexpression of th...
Journal of Biological Chemistry, 2000
c-Jun N-terminal kinase (JNK) regulates gene expression in response to various extracellular stimuli. JNK can be activated by the tumor promoting agent, 12-Otetradecanoylphorbol-13-acetate (TPA) in normal human oral keratinocytes but not in human keratinocytes that have been immortalized (HOK-16B and HaCaT) or transformed (HOK-16B-Bap-T) nor in a cervical carcinoma cell line (HeLa). The refractory JNK activation response to TPA is not due a defect in the JNK pathway, because JNK can be activated by other stimuli, e.g. UV irradiation and an alkylating agent N-methyl-N-nitrosoguanidine in these immortalized or transformed cells. More importantly, the refractory JNK and JNKK activation response to TPA can be restored by treatment of the cells with a combination of TPA and a proteintyrosine phosphatase inhibitor, sodium orthovanadate. Furthermore, pretreatment of cells with TPA partially inhibited UV-or N-methyl-N-nitrosoguanidine-induced JNK activity. These results suggest that a TPA-inducible, orthovanadate-sensitive protein-tyrosine phosphatase may specifically down-regulate JNK signaling pathway in these immortalized/transformed epithelial cells. In contrast, ERK and p38/Mpk2 are not regulated by this TPA-induced phosphatase. This putative protein-tyrosine phosphatase appears to be JNK pathway-specific.
Induction of apoptosis in breast cancer cells by TPA
Oncogene, 1998
Bcl-2, Bax and p53 gene products have been linked to programmed cell death pathways. p21 WAF1 has been shown to mediate p53-induced cell cycle arrest and to inhibit cyclin-dependent kinase activity. We have analysed the expression of these genes and apoptosis induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in several human breast cancer cell line. We found up-regulation of p21 WAF1 and Bax expressions, however, the expressions of p53 and Bcl-2 genes remained unchanged in TPA-treated cells. Furthermore, DNA ladder formation and PARP cleavage were observed after treatment for 24 h, indicating apoptotic cell death. Flow cytometry with 7-amino actinomycin D staining showed that the number of apoptotic cells increased with longer treatment of TPA. From these results, we conclude that TPA is not only a tumor promoter, but also induces apoptosis in breast cancer cells. TPA-induced apoptosis appears to be mediated through a p53-independent pathway, and the up-regulation of p21 WAF1 and Bax may be the molecular mechanisms by which TPA induces apoptosis.
Targeting apoptosis in prostate cancer
2001
Prostate cancer was diagnosed in more than 180,000 men in the year 2000.2 Despite initial local therapy with surgery or radiation, many patients experience recurrence with advanced disease. Androgen ablation therapy produces only temporary responses because of the development of androgen 43 After failure of androgen ablation, resistance to chemotherapy develops quickly in patients treated with combinations of cytotoxic agents.16, 41, 43, 51 Molecular changes that occur during the progression of prostate cancer affect programmed cell death pathways and are associated with resistance to chemotherapy. These changes include mutations in p53 and overexpression of b~1-2.~. 51, 53, 63, 72, 77 Approaches that alter the expression or function of these and related proteins may improve therapeutic results. This article reviews current efforts to modulate apoptotic pathways and define new targets that could be important in the treatment of prostate cancer.