How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response (original) (raw)

Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

Proceedings of the National Academy of Sciences, 2006

We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin–F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces.

Buckling of actin stress fibers: A new wrinkle in the cytoskeletal tapestry

Cell Motility and The Cytoskeleton, 2002

Intracellular tension is considered an important determinant of cytoskeletal architecture and cell function. However, many details about cytoskeletal tension remain poorly understood because these forces cannot be directly measured in living cells. Therefore, we have developed a method to characterize the magnitude and distribution of pre-extension of actin stress fibers (SFs) due to resting tension in the cytoskeleton. Using a custom apparatus, human aortic endothelial cells (HAECs) were cultured on a pre-stretched silicone substrate coated with a fibronectin-like polymer. Release of the substrate caused SFs aligned in the shortening direction in adhered cells to buckle when compressed rapidly (5% shortening per second or greater) beyond their unloaded slack length. Subsequently, the actin cytoskeleton completely disassembled in 5 sec and reassembled within 60 sec. Quantification of buckling in digital fluorescent micrographs of cells fixed and stained with rhodamine phalloidin indicated a nonuniform distribution of 0–26% pre-extension of SFs in non-locomoting HAECs. Local variability suggests heterogeneity of cytoskeletal tension and/or stiffness within individual cells. These findings provide new information about the magnitude and distribution of cytoskeletal tension and the dynamics of actin stress fibers, and the approach offers a novel method to elucidate the role of specific cytoskeletal elements and crosslinking proteins in the force generating apparatus of non-muscle cells. Cell Motil. Cytoskeleton 52:266–274, 2002. © 2002 Wiley-Liss, Inc.

Active stiffening of F-actin network dominated by structural transition of actin filaments into bundles

Composites Part B: Engineering

Molecular motor regulated active contractile force is key for cells sensing and responding to their mechanical environment, which leads to characteristic structures and functions of cells. The F-actin network demonstrates a two-order of magnitude increase in its modulus due to contractility; however, the mechanism for this active stiffening remains unclear. Two widely acknowledged hypotheses are that active stiffening of F-actin network is caused by (1) the nonlinear force-extension behavior of cross-linkers, and (2) the loading mode being switched from bending to stretching dominated regime. Direct evidence supporting either theory is lacking. Here we examined these hypotheses and showed that a reorganization of F-actin network from cross-linked filament state to bundled stress fiber state plays a key role on active stiffening of actin network. We demonstrated through computational models that the stretching of cross-linkers and molecular motors has less impact on the active stiffening, while it is more sensitive to cytoskeleton reorganization during the elasticity sensing. The proposed new mechanism involving the cytoskeletal remodeling was able to integrate discrete experimental observations and has the potential to advance our understanding of active sensing and responding of cells.

Actin Dynamics, Architecture, and Mechanics in Cell Motility

Physiological Reviews, 2014

Tight coupling between biochemical and mechanical properties of the actin cytoskeleton drives a large range of cellular processes including polarity establishment, morphogenesis, and motility. This is possible because actin filaments are semi-flexible polymers that, in conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" (in laymen's terms, shock absorbers or fluidizers) able to exert or resist against force in a cellular environment. To modulate their mechanical properties, actin filaments can organize into a variety of architectures generating a diversity of cellular organizations including branched or crosslinked networks in the lamellipodium, parallel bundles in filopodia, and antiparallel structures in contractile fibers. In this review we describe the feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro, then we integrate this knowledge into our current understanding of cellular actin organization and its physiological roles.

Stress-Dependent Elasticity of Composite Actin Networks as a Model for Cell Behavior

Physical Review Letters, 2006

Networks of filamentous actin cross-linked with the actin-binding protein filamin A exhibit remarkable strain stiffening leading to an increase in differential elastic modulus by several orders of magnitude over the linear value. The variation of the frequency dependence of the differential elastic and loss moduli as a function of prestress is consistent with that observed in living cells, suggesting that cell elasticity is always measured in the nonlinear regime, and that prestress is an essential control parameter.

Force Production by a Bundle of Growing Actin Filaments Is Limited by Its Mechanical Properties

Biophysical Journal, 2019

Bundles of actin filaments are central to a large variety of cellular structures such as filopodia, stress fibers, cytokinetic rings, and focal adhesions. The mechanical properties of these bundles are critical for proper force transmission and force bearing. Previous mathematical modeling efforts have focused on bundles' rigidity and shape. However, it remains unknown how bundle length and buckling are controlled by external physical factors. In this work, we present a biophysical model for dynamic bundles of actin filaments submitted to an external load. In combination with in vitro motility assays of beads coated with formins, our model allowed us to characterize conditions for bead movement and bundle buckling. From the deformation profiles, we determined key biophysical properties of tethered actin bundles such as their rigidity and filament density.

Mechanoaccumulative Elements of the Mammalian Actin Cytoskeleton

Current biology : CB, 2016

To change shape, divide, form junctions, and migrate, cells reorganize their cytoskeletons in response to changing mechanical environments [1-4]. Actin cytoskeletal elements, including myosin II motors and actin crosslinkers, structurally remodel and activate signaling pathways in response to imposed stresses [5-9]. Recent studies demonstrate the importance of force-dependent structural rearrangement of α-catenin in adherens junctions [10] and vinculin's molecular clutch mechanism in focal adhesions [11]. However, the complete landscape of cytoskeletal mechanoresponsive proteins and the mechanisms by which these elements sense and respond to force remain to be elucidated. To find mechanosensitive elements in mammalian cells, we examined protein relocalization in response to controlled external stresses applied to individual cells. Here, we show that non-muscle myosin II, α-actinin, and filamin accumulate to mechanically stressed regions in cells from diverse lineages. Using reac...

Adaptive Response of Actin Bundles under Mechanical Stress

Actin is one of the main components of the architecture of cells. Actin filaments form different polymer networks with versatile mechanical properties that depend on their spatial organization and the presence of cross-linkers. Here, we investigate the mechanical properties of actin bundles in the absence of cross-linkers. Bundles are polymerized from the surface of mDia1-coated latex beads, and deformed by manipulating both ends through attached beads held by optical tweezers, allowing us to record the applied force. Bundle properties are strikingly different from the ones of a homogeneous isotropic beam. Successive compression and extension leads to a decrease in the buckling force that we attribute to the bundle remaining slightly curved after the first deformation. Furthermore, we find that the bundle is solid, and stiff to bending, along the long axis, whereas it has a liquid and viscous behavior in the transverse direction. Interpretation of the force curves using a Maxwell visco-elastic model allows us to extract the bundle mechanical parameters and confirms that the bundle is composed of weakly coupled filaments. At short times, the bundle behaves as an elastic material, whereas at long times, filaments flow in the longitudinal direction, leading to bundle restructuring. Deviations from the model reveal a complex adaptive rheological behavior of bundles. Indeed, when allowed to anneal between phases of compression and extension, the bundle reinforces. Moreover, we find that the characteristic visco-elastic time is inversely proportional to the compression speed. Actin bundles are therefore not simple force transmitters, but instead, complex mechano-transducers that adjust their mechanics to external stimulation. In cells, where actin bundles are mechanical sensors, this property could contribute to their adaptability.