Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells (original) (raw)

Lipid-Based Nanovectors for Targeting of CD44-Overexpressing Tumor Cells

Journal of drug delivery, 2013

Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan that exists in living systems, and it is a major component of the extracellular matrix. The hyaluronic acid receptor CD44 is found at low levels on the surface of epithelial, haematopoietic, and neuronal cells and is overexpressed in many cancer cells particularly in tumour initiating cells. HA has been therefore used as ligand attached to HA-lipid-based nanovectors for the active targeting of small or large active molecules for the treatment of cancer. This paper describes the different approaches employed for the preparation, characterization, and evaluation of these potent delivery systems.

Tumor targeting profiling of hyaluronan-coated lipid based-nanoparticles

Nanoscale, 2014

Hyaluronan (HA), a naturally occurring high Mw (HMw) glycosaminoglycan, has been shown to play crucial roles in cell growth, embryonic development, healing processes, inflammation, and tumor development and progression. Low Mw (LMw, <10 kDa) HA has been reported to provoke inflammatory responses, such as induction of cytokines, chemokines, reactive nitrogen species and growth factors. Herein, we prepared and characterized two types of HA coated (LMw and HMw) lipid-based targeted and stabilized nanoparticles (tsNPs) and tested their binding to tumor cells expressing the HA receptor (CD44), systemic immunotoxicity, and biodistribution in tumor bearing mice. In vitro, the Mw of the surface anchored HA had a significant influence on the affinity towards CD44 on B16F10 murine melanoma cells. LMw HA-tsNPs exhibited weak binding, while binding of tsNPs coated with HMw HA was characterized by high binding. Both types of tsNPs had no measured effect on cytokine induction in vivo following intravenous administration to healthy C57BL/6 mice suggesting no immune activation. HMw HA-tsNPs showed enhanced circulation time and tumor targeting specificity, mainly by accumulating in the tumor and its vicinity compared with LMw HA-tsNPs. Finally, we show that methotrexate (MTX), a drug commonly used in cancer chemotherapy, entrapped in HMw HA-tsNPs slowly diffused from the particles with a half-life of 13.75 days, and improved the therapeutic outcome in a murine B16F10 melanoma model compared with NPs suggesting an active cellular targeting beyond the Enhanced Permeability and Retention (EPR) effect. Taken together, these findings have major implications for the use of high molecular weight HA in nanomedicine as a selective and safe active cellular targeting moiety.

Smart Nanoparticles Based on Hyaluronic Acid for Redox-Responsive and CD44 Receptor-Mediated Targeting of Tumor

Nanoscale Research Letters, 2015

Background Since aggressive cancer cells highly express the CD44 receptor compared to normal cells, hyaluronic acid (HA) can be used for CD44 targeting molecule. Since glutathione (GSH) level is normally elevated in the intracellular compartment and in the tumor cell, the fact that disulfide bond can be cleaved by GSH is widely used for intracellular drug delivery. Methods HA was connected with poly(dl-lactide-co-glycolide) (PLGA) using disulfide linkage, and then a diblock copolymer (HAssLG) was prepared. Doxorubicin (DOX)-loaded HAssLG nanoparticles were prepared by dialysis procedures. Results and Discussion DOX-loaded HAssLG nanoparticles have spherical shapes with small particle size of less than 300 nm. In fluorescence measurement, DOX was dose-dependently liberated from nanoparticles by the addition of GSH. DOX release rate from HAssLG nanoparticles was increased by the addition of GSH. To confirm CD44 receptor-mediated endocytosis of nanoparticles, CD44-positive MDA-MB231 ce...

Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy

Drug discovery today, 2016

The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy.

Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel

Biomaterials, 2011

Hyaluronic acid-ceramide (HA-CE)-based self-assembled nanoparticles were developed for intravenous docetaxel (DCT) delivery. In this study, physicochemical properties, cellular uptake efficiency, and in vivo targeting capability of the nanoparticles developed were investigated. DCT-loaded nanoparticles composed of HA-CE and Pluronic 85 (P85) with a mean diameter of 110e140 nm were prepared and their morphological shapes were assessed using transmission electron microscopy (TEM). DCT release from nanoparticle was enhanced with increasing P85 concentrations in our in vitro model. Blank nanoparticles exhibited low cytotoxicity in U87-MG, MCF-7 and MCF-7/ADR cell lines. From cellular uptake studies, the nanoparticles developed enhanced the intracellular DCT uptake in the CD44-overexpressing cell line (MCF-7). The nanoparticles were shown to be taken up by the HAeCD44 interaction according to DCT and coumarin 6 (C6) cellular uptake studies. The multidrug resistance (MDR)-overcoming effects of DCTloaded HA-CE/P85-based nanoparticles were also observed in cytotoxicity tests in MCF-7/ADR cells. Following the intravenous injection of DCT-loaded cyanine 5.5 (Cy5.5)-conjugated nanoparticles in MCF-7/ADR tumor-bearing mice, its in vivo targeting for CD44-overexpressing tumors was identified by noninvasive near-infrared (NIR) fluorescence imaging. These results indicate that the HA-CE-based nanoparticles prepared may be a promising anti-cancer drug delivery system through passive and active tumor targeting.

Development of vorinostat-loaded solid lipid nanoparticles to enhance pharmacokinetics and efficacy against multidrug-resistant cancer cells

Pharmaceutical research, 2014

Purpose To investigate whether delivery of a histone deacetylase inhibitor, vorinostat (VOR), by using solid lipid nanoparticles (SLNs) enhanced its bioavailability and effects on multidrugresistant cancer cells. Methods VOR-loaded SLNs (VOR-SLNs) were prepared by hot homogenization using an emulsification-sonication technique, and the formulation parameters were optimized. The cytotoxicity of the optimized formulation was evaluated in cancer cell lines (MCF-7, A549, and MDA-MB-231), and pharmacokinetic parameters were examined following oral and intravenous (IV) administration to rats. Results VOR-SLNs were spherical, with a narrowly distributed average size of~100 nm, and were physically stable for 3 months. Drug release showed a typical bi-phasic pattern in vitro, and was independent of pH. VOR-SLNs were more cytotoxic than the free drug in both sensitive (MCF-7 and A549) and resistant (MDA-MB-231) cancer cells. Importantly, SLN formulations showed prominent cytotoxicity in MDA-MB-231 cells at low doses, suggesting an ability to effectively counter the P-glycoprotein-related drug efflux pumps. Pharmacokinetic studies clearly demonstrated that VOR-SLNs markedly improved VOR plasma circulation time and decreased its elimination rate constant. The areas under the VOR concentration-time curve produced by oral and IV administration of VOR-SLNs were significantly greater than those produced by free drug administration. These in vivo results clearly highlighted the remarkable potential of SLNs to augment the bioavailability of VOR. Conclusions VOR-SLNs successfully enhanced the oral bioavailability, circulation half-life, and chemotherapeutic potential of VOR.

Bioreducible Shell-Cross-Linked Hyaluronic Acid Nanoparticles for Tumor-Targeted Drug Delivery

Biomacromolecules, 2015

The major issues of self-assembled nanoparticles as drug carriers for cancer therapy include biostability and tumor-targetability because the premature drug release from and nonspecific accumulation of the drug-loaded nanoparticles may cause undesirable toxicity to normal organs and lower therapeutic efficacy. In this study, we developed robust and tumor-targeted nanocarriers based on an amphiphilic hyaluronic acid (HA)-polycaprolactone (PCL) block copolymer, in which the HA shell was cross-linked via a bioreducible disulfide linkage. Doxorubicin (DOX), chosen as a model anticancer drug, was effectively encapsulated into the nanoparticles with high drug loading efficiency. The DOX-loaded bioreducible HA nanoparticles (DOX-HA-ss-NPs) greatly retarded the drug release under physiological conditions (pH 7.4), whereas the drug release rate was markedly enhanced in the presence of glutathione, a thiol-containing tripeptide capable of reducing disulfide bonds in the cytoplasm. Furthermore...

Self-assembled hyaluronic acid nanoparticles for active tumor targeting

Biomaterials, 2010

Hyaluronic acid nanoparticles (HA-NPs), which are formed by the self-assembly of hydrophobically modified HA derivatives, were prepared to investigate their physicochemical characteristics and fates in tumor-bearing mice after systemic administration. The particle sizes of HA-NPs were controlled in the range of 237-424 nm by varying the degree of substitution of the hydrophobic moiety. When SCC7 cancer cells over-expressing CD44 (the receptor for HA) were treated with fluorescently labeled Cy5.5-HA-NPs, strong fluorescence signals were observed in the cytosol of these cells, suggesting efficient intracellular uptake of HA-NPs by receptor-mediated endocytosis. In contrast, no significant fluorescence signals were observed when Cy5.5-labeled HA-NPs were incubated with normal fibroblast cells (CV-1) or with excess free-HA treated SCC7 cells. Following systemic administration of Cy5.5-labeled HA-NPs with different particle sizes into a tumor-bearing mouse, their biodistribution was monitored as a function of time using a non-invasive near-infrared fluorescence imaging system. Irrespective of the particle size, significant amounts of HA-NPs circulated for two days in the bloodstream and were selectively accumulated into the tumor site. The smaller HA-NPs were able to reach the tumor site more effectively than larger HA-NPs. Interestingly, the concentration of HA-NPs in the tumor site was dramatically reduced when mice were pretreated with an excess of free-HA. These results imply that HA-NPs can accumulate into the tumor site by a combination of passive and active targeting mechanisms.

Development of lipid nanoparticles for a histone deacetylases inhibitor as a promising anticancer therapeutic

Drug delivery, 2014

Background: Vorinostat (VRS), a histone deacetylases inhibitor, has significant cytotoxic potential in a large number of human cancer cell lines. Objective: To clarify its promising anticancer potential and to improve its drawback related to physical properties and in vivo performance of VRS. Methods: VRS was successfully incorporated into nanostructured lipid carriers (NLCs) by the hot microemulsion method using sonication following a homogenization technique. Results: After the optimization process, VRS-loaded NLCs (VRS-NLCs) were obtained as ideal quality nanoparticles with a spherical shape, small size ($150 nm), negative charge ($À22 mV), and narrow size distribution. In addition, the high entrapment efficiency ($99%) and sustained drug release profile were recorded. Cytotoxicity study in three different cell lines (A549, MCF-7, and SCC-7) demonstrated higher cytotoxicity of VRS-NLCs than free drug. Finally, the AUC of VRS (118.16 ± 17.35 mgh/mL) was enhanced $4.4 times compared with that of free drug (27.03 ± 3.25 mgh/mL). Conclusion: These results suggest the potential of NLCs as an oral delivery system for enhancement of cellular uptake, in vitro cytotoxicity in cancer cell lines and the oral bioavailability of VRS.

CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles

Pharmaceuticals

Nanotechnology offers advanced biomedical tools for diagnosis and drug delivery, stressing the value of investigating the mechanisms by which nanocarriers interact with the biological environment. Herein, the cellular response to CD44-targeted nanoparticles (NPs) was investigated. CD44, the main hyaluronic acid (HA) receptor, is widely exploited as a target for therapeutic purposes. HA NPs were produced by microfluidic platform starting from HA with different molecular weights (Mw, 280, 540, 820 kDa) by polyelectrolyte complexation with chitosan (CS). Thanks to microfluidic technology, HA/CS NPs with the same physical features were produced, and only the effects of HA Mw on CD44-overexpressing cells (human mesenchymal stem cells, hMSCs) were studied. This work provides evidence of the HA/CS NPs biocompatibility regardless the HA Mw and reveals the effect of low Mw HA in improving the cell proliferation. Special attention was paid to the endocytic mechanisms used by HA/CS NPs to ente...