Modeling and Analysis of Collision Avoidance MAC Protocol in Multi-Hop Wireless Ad-Hoc Network (original) (raw)

2011, International Journal of Communication Networks and Information Security (IJCNIS)

The absence of centralized administration, multi-hop transmission, and the nature of wireless channels pose many challenging research area in Mobile Ad hoc NETworks (MANETs). In this paper, a collision avoidance Medium Access Control (MAC) protocol was used for the modeling and analysis of multi-hop wireless ad hoc network, in which RTS/CTS/DATA/ACK handshake and Exponential Increase Exponential Decrease (EIED) back-off mechanism were adopted. A simple n-vertex undirected graph G(V, A) is used to model the topology of MANET while three-state Markov chain was used to model channel state and node state of MANET. Simulation results show that throughput increases with increase in persistent probability, sensing range and length of a DATA frame. Also throughput has a peak value at some point of the persistent probability, sensing range and length of a DATA frame, which is influenced by the number of nodes. In the other hand throughput increases along with the increase of transmission range for some values, then it start decreasing with increase in transmission range. Furthermore throughput decreases with increase in the number of nodes and back-off time. In order to validate the proposed models, a performance comparison of the throughput of existing model with the throughput of the proposed model by considering persistent probability, sensing range, transmission range, length of DATA transmission and back-off time was carried out. The overall results show that the proposed model achieve better throughput than the existing model.