Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions (original) (raw)
Abstract
We consider a competition-di usion system with inhomogeneous Dirichlet boundary conditions for two competitive species and show that they spatially segregate as the interspeciÿc competition rates become large. The limit problem turns out to be a free boundary problem. ?
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (13)
- H. Brezis, Analyse Fonctionnelle, Masson, Paris, 1983.
- E.N. Dancer, D. Hilhorst, M. Mimura, L.A. Peletier, Spatial segregation limit of a competition-di usion system, European J. Appl. Math. 10 (1999) 97-115.
- E.N. Dancer, Z. Zhang, Dynamics of Lotka Volterra competition systems with large interactions, J. Di erential Equations 182 (2002) 470-489.
- E. Dibenedetto, Degenerate Parabolic Equations, Springer, Berlin, 1993.
- S.I. Ei, Q. Fan, M. Mimura, E ect of domain-shape on coexistence problems in a competition-di usion system, J. Math. Biol. 29 (1991) 219-237.
- L.C. Evans, A convergence theorem for a chemical reaction-di usion system, Houston J. Math. 6 (1980) 259-267.
- D. Hilhorst, M. Iida, M. Mimura, H. Ninomiya, A competition-di usion system approximation to the classical two-phase Stefan problem, Japan J. Indust. Appl. Math. 18 (2001) 161-180.
- M.W. Hirsch, Di erential equations and convergence almost everywhere of strongly monotone semi ows, PAM Technical Report, University of California, Berkeley, 1982.
- K. Kishimoto, H.F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-di usion system on convex domains, J. Di erential Equations 58 (1985) 15-21.
- O.A. LadyÄ zenskaya, V.A. Solonikov, N.N. Ural'cera, Linear and quasilinear equations of parabolic type, in: Translations of Mathematical Monographs, Vol. 24, American Mathematical Society, Providence, RI, 1968.
- A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, in: Progress in Nonlinear Di erential Equations and their Applications, Vol. 16, Birkh auser, Basel, 1995.
- H. Matano, M. Mimura, Pattern formation in competition-di usion systems in nonconvex domains, Publ. Res. Inst. Math. Sci. 19 (1983) 1049-1079.
- T. Namba, M. Mimura, Spatial distribution for competing populations, J. Theoret. Biol. 87 (1980) 795-814.