Determination of Dose in HDR Brachytherapy by using Treatment Planning System, Manual Calculation and Film Measurement (original) (raw)

Film based verification of calculation algorithms used for brachytherapy planning-getting ready for upcoming challenges of MBDCA

Journal of Contemporary Brachytherapy, 2016

Purpose: Well-known defect of TG-43 based algorithms used in brachytherapy is a lack of information about interaction cross-sections, which are determined not only by electron density but also by atomic number. TG-186 recommendations with using of MBDCA (model-based dose calculation algorithm), accurate tissues segmentation, and the structure's elemental composition continue to create difficulties in brachytherapy dosimetry. For the clinical use of new algorithms, it is necessary to introduce reliable and repeatable methods of treatment planning systems (TPS) verification. The aim of this study is the verification of calculation algorithm used in TPS for shielded vaginal applicators as well as developing verification procedures for current and further use, based on the film dosimetry method. Material and methods: Calibration data was collected by separately irradiating 14 sheets of Gafchromic ® EBT films with the doses from 0.25 Gy to 8.0 Gy using HDR 192 Ir source. Standard vaginal cylinders of three diameters were used in the water phantom. Measurements were performed without any shields and with three shields combination. Gamma analyses were performed using the VeriSoft ® package. Results: Calibration curve was determined as third-degree polynomial type. For all used diameters of unshielded cylinder and for all shields combinations, Gamma analysis were performed and showed that over 90% of analyzed points meets Gamma criteria (3%, 3 mm). Conclusions: Gamma analysis showed good agreement between dose distributions calculated using TPS and measured by Gafchromic films, thus showing the viability of using film dosimetry in brachytherapy.

Gafchromic film dosimetry of a new HDR brachytherapy source

Journal of Applied Clinical Medical Physics, 2016

High-dose-rate (HDR) brachytherapy is a popular modality for treating cancers of the prostate, cervix, endometrium, breast, skin, bronchus, esophagus, and head and neck as well as soft-tissue sarcomas. Because of different source designs and licensing issues, there is a need for specific dosimetry dataset for each HDR source model. The main objective of the present work is to measure 2D relative dose distribution around a new prototype 192 Ir source, referred to as IRAsource-HDR, in PMMA phantom in the framework of AAPM TG-43 and TG-55 recommendations for radial distances of 0.5 cm to 4 cm. Radiochromic films (RCFs) Gafchromic EBT and HD-810 were used for measurements. The dose rate constant, Λ, of the source was determined to be 1.084 ± 4.6%, 1.129 ± 4.4%, and 1.112 ± 0.8% cGyh-1 U-1 using EBT RCF, HD-810 RCF, and Monte Carlo (MC) simulation, respectively. The results obtained in this study are in good agreement with previously published data for HDR interstitial 192 Ir-HDR sources with a maximum discrepancy of ± 4.5%. An acceptable agreement (within ± 2%) between MC calculations and RCFs measurements showed that HD-810 RCF dosimetry is as good as EBT RCF, within HDR brachytherapy, and justifies the use of specific data for this new source. These data could be used as a benchmark for dose calculations in the conventional brachytherapy treatment planning systems.

Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

Physics in Medicine and Biology, 2013

A novel phantom is presented for 'full system' dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

Dose Distribution of 192Ir HDR Brachytherapy Source Measurement using Gafchromic® EBT3 Film Dosimeter and TLD-100H

Pertanika Journal of Science and Technology, 2022

This study aims to measure the radial dose function and anisotropy function F(r, θ) of high Dose Rate (HDR) 192Ir source in a fabricated water-equivalent phantom using Gafchromic® EBT3 film and TLD-100H and to compare the results obtained with the MCNP5 calculated values. The phantom was fabricated using Perspex PMMA material. For, the EBT3 films with a required dimension and TLD-100H chips were placed at r=1, 2, 3, 5, and 10 cm from the source. The F(r, θ) measurements were carried out at r=1, 2, 3, 5, and 10 cm with the angle range from 10° to 170°. The result of from EBT3 film and TLD-100H was in good agreement (2.10%±1.99). Compared to MCNP5, the differences are within 0.31% to 11.47% for EBT3 film and 0.08% to 10.58% for TLD-100H. For the F(r, θ), an average deviation with the MCNP5 calculation is 4.94%±2.7. For both and F(r, θ), the effects are prominent at r=10 cm. At this distance, the response of both Gafchromic® EBT3 film and TLD-100H shows less sensitivity as the dose fol...

A brachytherapy model-based dose calculation algorithm -AMIGOBrachy

2013

Brachytherapy treatments have been performed based on TG-43U1 water dose formalism which neglects human tissues density and composition, body interfaces and applicator effects. As these effects could be relevant for brachytherapy energy range, modern treatment planning systems (TPS) are now available that are based on model-based dose calculation algorithms (MBDCA) enabling heterogeneity corrections, which are needed to replace the TG-43U1 water dose formalism for a more accurate approach. The recently published AAPM TG-186 report is the first step towards to a TPS taking into account heterogeneities, applicators and human body complexities. This report presents the current status, recommendations for clinical implementation and specifies research areas where considerable efforts are necessary to move forward with MBDCA. Monte Carlo (MC) codes are an important part of the current algorithms due their flexibility and accuracy, although, almost all MC codes present no interface to process the large amount of data necessary to perform clinical cases simulations, which may include hundreds of dwell positions, inter-seed attenuation, image processing and others time consuming issues that can make MC simulation unfeasible without a pre-processing interface. This work presents the AMIGOBrachy interface tool (Algorithm for Medical Image-based Generating Object-Brachytherapy module) which provides all the pre-processing task needed for the simulation. This software can import and edit treatments plans from BrachyVision™ (Varian Medical Systems, Inc., Palo Alto, CA) and ONCENTRA™ (Elekta AB, Stockholm, Sweden), and also create a new plan through contouring resources, needle recognition, HU segmentation, combining voxels phantoms with analytical geometries to define applicators and other resources used to create MCNP5 input and analyze the results. This work presents some results used to validate the software and to evaluate the heterogeneities impact in a clinical case performed using an HDR 192Ir source.

Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques

Journal of contemporary brachytherapy, 2012

This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dos...

Development of Dosimetric Verification System for Patient-Specific Quality Assurance of High-Dose-Rate Brachytherapy

Frontiers in Oncology, 2021

Purpose: The aim of this study was to develop a dosimetric verification system (DVS) using a solid phantom for patient-specific quality assurance (QA) of high-dose-rate brachytherapy (HDR-BT).Methods: The proposed DVS consists of three parts: dose measurement, dose calculation, and analysis. All the dose measurements were performed using EBT3 film and a solid phantom. The solid phantom made of acrylonitrile butadiene styrene (ABS, density = 1.04 g/cm3) was used to measure the dose distribution. To improve the accuracy of dose calculation by using the solid phantom, a conversion factor [CF(r)] according to the radial distance between the water and the solid phantom material was determined by Monte Carlo simulations. In addition, an independent dose calculation program (IDCP) was developed by applying the obtained CF(r). To validate the DVS, dosimetric verification was performed using gamma analysis with 3% dose difference and 3 mm distance-to-agreement criterion for three simulated c...

Dosimetry procedure to verify dose in High Dose Rate (HDR) brachytherapy treatment of cancer patients: A systematic review

Physica Medica, 2022

High dose rate (HDR) brachytherapy is a widely accepted cancer treatment method which provides high cure rates. In a HDR brachytherapy treatment, high radiation doses are delivered to the tumor area by placing the radioactive sources in the close proximity to the region of interest. The brachytherapy dose delivery follows the inverse square law with rapid dose fall of leading to minimal damage to the surrounding normal tissue. The safe direct delivery of the radiation dose to the tumour leads to good treatment outcomes comparable to other modalities of treatment. Hence, it is crucial to maintain a sharp drop in the radiation dose distribution within very short distances. Treatment planning system (TPS) which is controlled by a computer algorithm plays a significant role in calculating the optimum doses to the tumour area during a typical HDR brachytherapy treatment. However, the optimum dose calculated by the TPS must be verified by using an independent testing method in order to eliminate under/over irradiation of the tumor region and as quality assurance. In general, two types of independent dose verification methods(experimental and computational) are used to crosscheck the doses calculated by TPS. This systematic review aims to summarize the studies done in the past ten years on HDR brachytherapy treatment planning verification and to analyze the reliability and limitations.

Verification of brachytherapy dosimetry with radiochromic film

Medical Dosimetry, 1999

The aim of this work is to empirically validate the optimized dose distribution calculated by the Nucletron Brachytherapy Planning System (v. 13.3) at a distance of 1.0 cm from a stepping source of high-dose-rate-iridium 192 (192Ir). The longitudinal dose distribution at 1.0 cm from a straight pathway of multiple-source positions is measured using radiochromic film and compared with the planning system’s calculated results. The optical density of the exposed films was determined with a modified Scanditronix film scanner, and the film was calibrated with 192Ir using manually calculated exposure times. A calibration equation was used to convert scanner output to dose. Our results illustrate the significance of exacting geometry in the experimental setup due to the inverse square law and the small distances involved. The dose distribution calculated by the Nucletron Brachytherapy Planning System (v. 13.3), at a distance of 1.0 cm, is validated to within ±4% of the measured dose distrib...