Parietal transcranial random noise stimulation improves long-term visual acquisition of foreign vocabulary (original) (raw)

Neural Stimulation Has a Long-Term Effect on Foreign Vocabulary Acquisition

Neural Plasticity, 2015

Acquisition of a foreign language is a challenging task that is becoming increasingly more important in the world nowadays. There is evidence suggesting that the frontal and temporal cortices are involved in language processing and comprehension, but it is still unknown whether foreign language acquisition recruits additional cortical areas in a causal manner. For the first time, we used transcranial random noise stimulation on the frontal and parietal brain areas, in order to compare its effect on the acquisition of unknown foreign words and a sham, or placebo, condition was also included. This type of noninvasive neural stimulation enhances cortical activity by boosting the spontaneous activity of neurons. Foreign vocabulary acquisition was tested both immediately and seven days after the stimulation. We found that stimulation on the posterior parietal, but not the dorsolateral prefrontal cortex or sham stimulation, significantly improved the memory performance in the long term. These results suggest that the posterior parietal cortex is directly involved in acquisition of foreign vocabulary, thus extending the "linguistic network" to this area.

Neural Stimulation Foreign Vocabulary Acquisition

Acquisition of a foreign language is a challenging task that is becoming increasingly more important in the world nowadays. There is evidence suggesting that the frontal and temporal cortices are involved in language processing and comprehension, but it is still unknown whether foreign language acquisition recruits additional cortical areas in a causal manner. For the first time, we used transcranial random noise stimulation on the frontal and parietal brain areas, in order to compare its effect on the acquisition of unknown foreign words and a sham, or placebo, condition was also included. This type of noninvasive neural stimulation enhances cortical activity by boosting the spontaneous activity of neurons. Foreign vocabulary acquisition was tested both immediately and seven days after the stimulation. We found that stimulation on the posterior parietal, but not the dorsolateral prefrontal cortex or sham stimulation, significantly improved the memory performance in the long term. These results suggest that the posterior parietal cortex is directly involved in acquisition of foreign vocabulary, thus extending the "linguistic network" to this area.

Using transcranial direct current stimulation (tDCS) on the dorsolateral prefrontal cortex to promote long-term foreign language vocabulary learning

Brain and Cognition, 2021

Transcranial direct current stimulation (tDCS) on the dorsolateral prefrontal cortex (DLPFC) was used to improve foreign-langue learning while using mental imagery. Participants underwent two sessions of 1 mA, 1.5 mA, or sham stimulation prior to learning Swahili-English word pairs two consecutive days. During learning, participants were encouraged to create a mental image of the associated English word. Twenty-four hours after learning and one week later, participants received a cued recall test. A linear dose-response effect of stimulation was found across both tests that occurred long after the immediate effects of stimulation. Follow-up comparisons revealed that only the 1.5 mA condition differed from the sham group. Exploratory moderating effects revealed interactions with sleep quality and handedness. Those with poorer sleep and who were left-handed showed greater recall after 1.5 mA of stimulation than those with better sleep and right-handers. A follow-up behavioral study probing strategy usage indicated that mental imagery strategy use did not strongly impact learning but point to other possible mechanisms including the importance of attending to multimodal perceptual details and memory consolidation. This preliminary evidence supports the role of the DLPFC or connected regions in foreign language vocabulary learning and verbal memory encoding.

Dorsolateral Prefrontal Transcranial Direct Current Stimulation Modulates Language Processing but Does Not Facilitate Overt Second Language Word Production

Frontiers in neuroscience, 2018

Word retrieval in bilingual speakers partly depends on executive control systems in the left prefrontal cortex - including dorsolateral prefrontal cortex (DLPFC). We tested the hypothesis that DLPFC modulates word production of words specifically in a second language (L2) by measuring the effects of anodal transcranial direct current stimulation (anodal-tDCS) over the DLPFC on picture naming and word translation and on event-related potentials (ERPs) and their sources. Twenty-six bilingual participants with "unbalanced" proficiency in two languages were given 20 min of 1.5 mA anodal or sham tDCS (double-blind stimulation design, counterbalanced stimulation order, 1-week intersession delay). The participants then performed the following tasks: verbal and non-verbal fluency during anodal-tDCS stimulation and first and second language (L1 and L2) picture naming and translation [forward (L1 → L2) and backward (L2 → L1)] immediately after stimulation. The electroencephalogram (...

Language learning in the adult brain: disrupting the dorsolateral prefrontal cortex facilitates word-form learning

Scientific Reports

Adults do not learn languages as easily as children do. It has been hypothesized that the latedeveloping prefrontal cortex that supports executive functions competes with procedural learning mechanisms that are important for language learning. To address this hypothesis, we tested whether a temporary neural disruption of the left Dorsolateral Prefrontal Cortex (DLPFC) can improve implicit, procedural learning of word-forms in adults. Young adults were presented with repeating audiovisual sequences of syllables for immediate serial recall in a Hebb repetition learning task that simulates wordform learning. Inhibitory theta-burst Transcranial Magnetic Stimulation was applied to the left DLPFC or to the control site before the Hebb task. The DLPFC-disrupted group showed enhanced learning of the novel phonological sequences relative to the control group. Moreover, learning was negatively correlated with executive functions that rely on the DLPFC in the control group, but not in the DLPFCdisrupted group. The results support the hypothesis that a mature prefrontal cortex competes with implicit learning of word-forms. The findings provide new insight into the competition between brain mechanisms that contribute to language learning in the adult brain.

Functional connectivity between brain regions involved in learning words of a new language

Brain and Language, 2010

Previous studies have identified several brain regions that appear to be involved in the acquisition of novel word forms. Standard word-by-word presentation is often used although exposure to a new language normally occurs in a natural, real world situation. In the current experiment we investigated naturalistic language exposure and applied a model-free analysis for hemodynamic-response data. Functional connectivity, temporal correlations between hemodynamic activity of different areas, was assessed during rest before and after presentation of a movie of a weather report in Mandarin Chinese to Dutch participants. We hypothesized that learning of novel words might be associated with stronger functional connectivity of regions that are involved in phonological processing. Participants were divided into two groups, learners and non-learners, based on the scores on a post hoc word recognition task. The learners were able to recognize Chinese target words from the weather report, while the non-learners were not. In the first resting state period, before presentation of the movie, stronger functional connectivity was observed for the learners compared to the non-learners between the left supplementary motor area and the left precentral gyrus as well as the left insula and the left rolandic operculum, regions that are important for phonological rehearsal. After exposure to the weather report, functional connectivity between the left and right supramarginal gyrus was stronger for learners than for non-learners. This is consistent with a role of the left supramarginal gyrus in the storage of phonological forms. These results suggest both pre-existing and learning-induced differences between the two groups.

Language and Memory Improvements following tDCS of Left Lateral Prefrontal Cortex

PloS one, 2015

Recent research demonstrates that performance on executive-control measures can be enhanced through brain stimulation of lateral prefrontal regions. Separate psycholinguistic work emphasizes the importance of left lateral prefrontal cortex executive-control resources during sentence processing, especially when readers must override early, incorrect interpretations when faced with temporary ambiguity. Using transcranial direct current stimulation, we tested whether stimulation of left lateral prefrontal cortex had discriminate effects on language and memory conditions that rely on executive-control (versus cases with minimal executive-control demands, even in the face of task difficulty). Participants were randomly assigned to receive Anodal, Cathodal, or Sham stimulation of left lateral prefrontal cortex while they (1) processed ambiguous and unambiguous sentences in a word-by-word self-paced reading task and (2) performed an n-back memory task that, on some trials, contained interf...

NEUROSCIENCE OF FOREIGN LANGUAGE STUDYING

We describe and discuss the main data about brain cortex working and the main laws of cognitive psychology which we must concern in every learning process. We consider it in terms of foreign language learning as an example of a global learning process.

Combining Functional Neuroimaging with Off-line Brain Stimulation: Modulation of Task-related Activity in Language Areas

Journal of Cognitive Neuroscience, 2011

Repetitive TMS (rTMS) provides a noninvasive tool for modulating neural activity in the human brain. In healthy participants, rTMS applied over the language-related areas in the left hemisphere, including the left posterior temporal area of Wernicke (LTMP) and inferior frontal area of Broca, have been shown to affect performance on word recognition tasks. To investigate the neural substrate of these behavioral effects, off-line rTMS was combined with fMRI acquired during the performance of a word recognition task. Twenty right-handed healthy men underwent fMRI scans before and after a session of 10-Hz rTMS applied outside the magnetic resonance scanner. Functional magnetic resonance images were acquired during the performance of a word recognition task that used English or foreign-language words. rTMS was applied over the LTMP in one group of 10 participants (LTMP group), whereas the homologue region in the right hemisphere was stimulated in another group of 10 participants (RTMP gr...