Molecular dynamics simulation of condensation on nanostructured surface in a confined space (original) (raw)

Understanding heat transfer characteristics of phase change and enhancing thermal energy transport in nanoscale are of great interest in both theoretical and practical applications. In the present study, we investigated the nanos-cale vaporization and condensation by using molecular dynamics simulation. A cuboid system is modeled by placing hot and cold walls in the bottom and top ends and filling with working fluid between the two walls. By setting two different high temperatures for the hot wall, we showed the normal and explosive vaporizations and their impacts on thermal transport. For the cold wall, the cuboid nanostructures with fixed height, varied length, width ranging from 4 to 20 layers, and an interval of four layers are constructed to study the effects of condensation induced by different nanostructures. For vaporization, the results showed that higher temperature of the hot wall led to faster transport of the working fluid as a cluster moving from the hot wall to the cold wall. However, excessive temperature of the hot wall causes explosive boiling, which seems not good for the transport of heat due to the less phase change of working fluid. For condensation, the results indicate that nanostructure facilitates condensation, which could be affected not only by the increased surface area but also by the distances between surfaces of the nanostructures and the cold end. There is an optimal nanostructure scheme which maximizes the phase change rate of the entire system.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact