Molecule rectifier fabricated by capillary tunnel junction (original) (raw)
Related papers
In this work, we systematically studied the rectifying properties of molecular junction based on asymmetric tunneling and hopping charge transport in a single electronic state model using Landauer formula and Marcus theory. We first analyzed the asymmetric I-V characteristics and revealed distinct physical origins of the rectification under the two types of transports. We found significant difference in I-V characteristics of the two and the hopping transport can afford a much higher rectification ratio than tunneling. Next, the effect of key physical parameters on rectification performance under tunneling and hopping, like asymmetric factor, energy barrier, temperature and molecule-electrode coupling et al, were extensively evaluated, which provided a theoretical baseline for molecular diode design and performance modulation. At last, we further analyzed representative experimental results using the two models. We successfully reproduced the experimental results by adjusting the mo...
Physical chemistry chemical physics : PCCP, 2016
An advanced understanding of the molecule-electrode contact interfaces of single-molecule junctions is a necessity for real world application of future single-molecule devices. This study aims to elucidate the change in the contact tunnelling barrier induced by junction extension and how this change affects the resulting junction conductance. The contact barrier of Au-octanedithiol/octanediamine-Au junctions was studied under triangle (TRI) mechanical modulations using the modified scanning tunneling microscopy (STM) break junction technique. The experimental results reveal that as the junction separation extends, the contact barrier of octanedithiol follows a unique trend, a linear increase followed by a plateau in barrier height, which is in contrast to that of octanediamine, a nearly rectangle barrier. We propose a modified contact barrier model for the unique barrier shape of octanedithiol, based on which the calculation agrees well with the experimental data. This study shows u...
Physical chemistry chemical physics : PCCP, 2018
Dyads formed by an electron donor unit (D) covalently linked to an electron acceptor (A) by an organic bridge are promising materials as molecular rectifiers. Very recently, we have reported the charge transport measurements across self-assembled monolayers (SAMs) of two D-A systems consisting of the ferrocene (Fc) electron-donor linked to a polychlorotriphenylmethane (PTM) electron-acceptor in its non-radical (SAM 1) and radical (SAM 2) forms. Interestingly, we observed that the non-radical SAM 1 showed rectification behavior of 2 orders of magnitude higher than its radical analogue dyad 2. In order to study the influence of the donor unit on the transport properties, we report herein the synthesis and characterization of two new D-A SAMs in which the electron-donor Fc unit is replaced by a tetrathiafulvalene (TTF) moiety linked to the PTM unit in its non-radical (SAM 3) and radical (SAM 4) forms. The observed decrease in the rectification ratio and increased current density for TT...
ACS Applied Materials & Interfaces, 2020
Control over the energy level alignment in molecular junctions is notoriously difficult, making it challenging to control basic electronic functions such as the direction of rectification. Therefore, alternative approaches to control electronic functions in molecular junctions are needed. This paper describes switching of the direction of rectification by changing the bottom electrode material M = Ag, Au, or Pt in M−S(CH 2) 11 S−BTTF//EGaIn junctions based on self-assembled monolayers incorporating benzotetrathiafulvalene (BTTF) with EGaIn (eutectic alloy of Ga and In) as the top electrode. The stability of the junctions is determined by the choice of the bottom electrode, which, in turn, determines the maximum applied bias window, and the mechanism of rectification is dominated by the energy levels centered on the BTTF units. The energy level alignments of the three junctions are similar because of Fermi level pinning induced by charge transfer at the metal−thiolate interface and by a varying degree of additional charge transfer between BTTF and the metal. Density functional theory calculations show that the amount of electron transfer from M to the lowest unoccupied molecular orbital (LUMO) of BTTF follows the order Ag > Au > Pt. Junctions with Ag electrodes are the least stable and can only withstand an applied bias of ±1.0 V. As a result, no molecular orbitals can fall in the applied bias window, and the junctions do not rectify. The junction stability increases for M = Au, and the highest occupied molecular orbital (HOMO) dominates charge transport at a positive bias resulting in a positive rectification ratio of 83 at ±1.5 V. The junctions are very stable for M = Pt, but now the LUMO dominates charge transport at a negative bias resulting in a negative rectification ratio of 912 at ±2.5 V. Thus, the limitations of Fermi level pinning can be bypassed by a judicious choice of the bottom electrode material, making it possible to access selectively HOMO-or LUMO-based charge transport and, as shown here, associated reversal of rectification.
Charge Transport and Rectification in Arrays of SAM-Based Tunneling Junctions
Nano Letters, 2010
This paper describes a method of fabrication that generates small arrays of tunneling junctions based on self-assembled monolayers (SAMs); these junctions have liquid-metal top-electrodes stabilized in microchannels and ultraflat (template-stripped) bottom-electrodes. The yield of junctions generated using this method is high (70-90%). The junctions examined incorporated SAMs of alkanethiolates having ferrocene termini (11-(ferrocenyl)-1-undecanethiol, SC 11 Fc); these junctions rectify currents with large rectification ratios (R), the majority of which fall within the range of 90-180. These values are larger than expected (theory predicts R e 20) and are larger than previous experimental measurements. SAMs of n-alkanethiolates without the Fc groups (SC n-1 CH 3 , with n ) 12, 14, 16, or 18) do not rectify (R ranged from 1.0 to 5.0). These arrays enable the measurement of the electrical characteristics of the junctions as a function of chemical structure, voltage, and temperature over the range of 110-293 K, with statistically large numbers of data (N ) 300-800). The mechanism of rectification with Fc-terminated SAMs seems to be charge transport processes that change with the polarity of bias: from tunneling (at one bias) to hopping combined with tunneling (at the opposite bias).
Rectification and stability of a single molecular diode with controlled orientation
Nature Chemistry, 2009
In the molecular electronics field it is highly desirable to engineer the structure of molecules to achieve specific functions. In particular, diode (or rectification) behaviour in single molecules is an attractive device function. Here we study charge transport through symmetric tetraphenyl and non-symmetric diblock dipyrimidinyldiphenyl molecules covalently bound to two electrodes. The orientation of the diblock is controlled through a selective deprotection strategy, and a method in which the electrode-electrode distance is modulated unambiguously determines the current-voltage characteristics of the single-molecule device. The diblock molecule exhibits pronounced rectification behaviour compared with its homologous symmetric block, with current flowing from the dipyrimidinyl to the diphenyl moieties. This behaviour is interpreted in terms of localization of the wave function of the hole ground state at one end of the diblock under the applied field. At large forward current, the molecular diode becomes unstable and quantum point contacts between the electrodes form.
Applied Physics A, 2016
In this research work, we compare the rectification trends of two symmetrical and one asymmetrical molecular junction formed with gold and silver electrodes bridging benzenedithiol molecule. The origin of rectification is attributed to both molecular bias drop and asymmetric molecule-electrode coupling. The electronic transport properties are computed by using semi-empirical extended Huckel method combined with non-equilibrium Green's function framework. The results are fully rationalized by analysing the distribution of molecular orbitals with changing bias voltage, available density of states and area of transmission spectra spanned within bias window, transmission eigenstates and transmission pathways. We deduce through this work that the molecular rectification is not only the property of asymmetric molecule-metal coupling, but molecular bias also plays vital role in stemming asymmetric I-V characteristics. Our results suggest how to realize molecular rectification by using different electrode materials which act as Schottky barriers in molecular junctions that emulate p-n junction diode in semiconductor electronics.
Molecular rectification with M|(D-s-A LB film)|M junctions
J Mater Chem, 1999
Molecular materials of the form electron donor-sigma-bridge-electron acceptor (D-s-A) have been synthesized and incorporated into non-centrosymmetric Langmuir-Blodgett (LB) multilayer structures. Electrical characterization has been performed using a metal|(Z-type LB film)|metal (M|LB|M) junction construction. Current density-voltage data demonstrate striking rectification behaviour. Computational modelling of the electronic structure of the material has been carried out using a first principles, density functional approach. Possible conduction mechanisms are discussed with reference to the results of this modelling.
Molecular rectification with M|(D-σ-A LB film)|M junctions
Journal of Materials Chemistry, 1999
Molecular materials of the form electron donor-sigma-bridge-electron acceptor (D-s-A) have been synthesized and incorporated into non-centrosymmetric Langmuir-Blodgett (LB) multilayer structures. Electrical characterization has been performed using a metal|(Z-type LB film)|metal (M|LB|M ) junction construction. Current density-voltage data demonstrate striking rectification behaviour. Computational modelling of the electronic structure of the material has been carried out using a first principles, density functional approach. Possible conduction mechanisms are discussed with reference to the results of this modelling.