Quantum Chemical Calculation of the Ground State Geometry and Vibrational Frequencies for the C60+ Ion (original) (raw)
Abstract
Theoretical calculations for the fullerene cation are important for several aspects. Jahn-Teller vibronic interactions are symmetry-allowed in this ion and the expectation is that such interactions lead to static geometrical effects. In addition it is interesting to study the change of the vibrational spectrum of C60 upon ionization. We have used semi-empirical AM1/UHF and PM3/UHF and density functional theoretical methods (B3LYP and LDA) to calculate the electronic ground state equilibrium geometry and vibrational frequencies for C60+. A small but significant reduction from icosahedral symmetry to D5d obtained from DFT calculations without symmetry constraints supports the presence of static Jahn-Teller distortions. Structure optimizations constrained to D5d and D3d symmetry have also been carried out. The JT stabilization energy in the D5d and D3d structures is estimated according to two different methods. Vibrational frequencies calculated at B3LYP/6-31G level for the fullerene c...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (35)
- H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, C 60 : buckminsterfullerene, Nature 1985, 318, 162-163.
- W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Solid C 60 : A new form of carbon, Nature 1990, 347, 354-358.
- B. H. Foing and P. Ehrenfreund, Detection of two interstellar absorption bands coincident with spectral features of C 60 + , Nature 1994, 369, 296-298.
- C. Motou, A. Léger, L. d'Hendecourt, and J. P. Maier, A proposed test with ISO of the presence of C 60 + in the interstellar medium, Astron. Astrophys. 1996, 311, 968-970.
- P. Jenniskens, G. Mulas, I. Porceddu, and P. Benvenuti, Diffuse interstellar bands near 9600 Å: not due to C 60 + yet, Astron. Astrophys. 1997, 327, 337-341.
- Z. Gasyna, L. Andrews, and P. N. Schatz, Near-infrared absorption spectra of C 60 radical cations and anions prepared simultaneously in solid argon, J. Phys. Chem. 1992, 96, 1525-1527.
- J. Fulara, M. Jakobi, and J. P. Maier, Electronic and infrared spectra of C 60 + and C 60 -in neon and argon matrices, Chem.Phys.Letters 1993, 211, 227-234.
- A. Ceulemans and P. W. Fowler, The Jahn-Teller instability of fivefold degenerate states in icosahedral molecules, J. Chem.Phys. 1990, 93, 1221-1234.
- A. H. H. Chang, W. C. Ermler, and R. M. Pitzer, C 60 and its ions: electronic structure, ionization potential and excitation energies, J. Phys. Chem. 1991, 95, 9288-9291.
- R. D. Bendale, J. F. Stanton, and M. C. Zerner, Investigation of the electronic structure and spectroscopy of Jahn- Teller distorted C 60 + , Chem.Phys.Letters 1992, 194, 467-471.
- N. Koga and K. Morokuma, Ab initio MO study of the C 60 anion radical: the Jahn-Teller distortion and electronic structure, Chem.Phys.Letters 1992, 196, 191-196.
- K. Tanaka, M. Okada, K. Okahara, and T. Yamabe, Structure and electronic state of C 60 -, Chem.Phys.Letters 1992, 193, 101-103.
- J. C. R. Faulhaber, D. Y. K. Ko, and P. R. Briddon, Vibronic coupling in C 60 and C 60 3-, Phys.Rev. B, 1993, 48, 661-664.
- P. R. Surján, L. Udvardi, and K. Németh, Electronic excitations in fullerenes: Janh-Teller distorted structures of C 60 , J. Mol. Struct. (Theochem), 1994, 311, 55-68.
- N. Manini, A. Dal Corso, M. Fabrizio, and E. Tosatti, Philos.Mag. 2001, B 81, 793-812.
- S. E. Canton, A. J. Yencha, E. Kukk, J. D. Bozek, M. C. A. Lopes, G. Snell, and N. Berrah, Experimental evidence of a dynamic Jahn-Teller effect in C 60 + , Phys.Rev.Lett. 2002, 89, 45502-1 -45502-4.
- Gaussian 98 (Revision 5.2), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
- J. S. Binkley, J. A., Pople, and W. J. Hehre, Self-consistent molecular orbital methods, 21. Small split-valence basis sets for first-row elements, J. Amer. Chem. Soc. 1980, 102, 939-947.
- R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 1971, 54, 724-728.
- M. J. S. Dewar, AM1: A new general purpose quantum mechanical molecular model, J.Am. Chem.Soc. 1985, 107, 3902-3909.
- J. J. P. Stewart, J. Comp. Chem. 1991, 12, 320-341.
- CPMD, Copyright IBM Corp. 1990-2001, Copyright MPI für Festkörperforschung Stuttgart 1997-2001.
- M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, New York, 1996.
- J. M. Schulman and R. L. Disch, The heat of formation of buckminsterfullerene, C 60 , J. Chem. Soc., Chem. Commun. 1991, 411-412.
- D. L. Lichtenberger, M. E. Jatcko, K. W. Nebesny, C. D. Ray, D. R. Huffman, and L. D. Lamb, The ionizations of C 60 in the gas phase and in thin solid films, Mat. Res. Soc. Symp. Proc. 1991, 206, Materials Research Society.
- K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, H. C. Dorn, R. D. Johnson, and M. de Vries, Bond lengths in free molecules of buckminsterfullerene, C 60 , from gas-phase electron diffraction, Science 1991, 254, 410-412.
- G. Scuseria, Ab initio theoretical predictions of the equilibrium geometries of C 60 , C 60 H 60 and C 60 F 60 , Chem. Phys. Letters 1991, 176, 423-427.
- Quantum Chemical Calculation of the Ground State Geometry and Vibrational Frequencies for the C 60 + Ion Internet Electronic Journal of Molecular Design 2003, 2, 690-701
- C. van Wüllen, An implementation of a Kohn-Sham density functional program using a Gaussian-type basis set. Application to the equilibrium geometry of C 60 and C 70 , Chem.Phys.Letters 1994, 219, 8-14.
- J. K. G. Watson, The numbers of structural parameters and potential constants of molecules, J.Mol.Spectrosc. 1972, 41, 229-230.
- J. M. Hollas, High Resolution Spectroscopy, Butterworths, London, 1982.
- J. L. Feldman, J. Q. Broughton, L. L. Boyer, D. E. Reich, and M. D. Kluge, Intramolecular force constant model for C 60 , Phys. Rev. B 1992, 46, 12731-12736.
- C. H. Choi, M. Kertész, and L. Mihály, Vibrational assignment of all 46 fundamentals of C 60 and C 60 6-: scaled quantum mechanical results performed in redundant internal coordinates and compared to experiments, J. Phys. Chem. A 2000, 104, 102-112.
- M. Schlüter, M. Lannoo, M. Needels, G. A. Baraff, and D. Tománek, J.Phys.Chem.Solids 1992, 53, 1473-1485.
- Biographies Imre Bakó is senior researcher at the Chemical Research Center of the Hungarian Academy of Sciences, Budapest, Hungary. Gábor Schubert is a Ph.D. student at the Chemical Research Center of the Hungarian Academy of Scienccs, Budapest, Hungary. László Nemes is science advisor at the Chemical Research Center of the Hungarian Academy of Sciences, Budapest, Hungary. His main specialization is molecular spectroscopy, his recent activities are connected with spectral diagnostics of laser-induced carbon plasmas.