A Framework for Discrete Integral Transformations I-The Pseudopolar Fourier Transform (original) (raw)

Fast and accurate Polar Fourier transform

Ronald Coifman

Applied and Computational Harmonic Analysis, 2006

View PDFchevron_right

Direct Inversion of the 3D Pseudo-polar Fourier Transform

Yoel Shkolnisky, Gil Shabat

View PDFchevron_right

Accurate and fast discrete polar fourier transform

Ronald Coifman

2004

View PDFchevron_right

Peer Review #3 of "Discrete two dimensional Fourier transform in polar coordinates part II: numerical computation and approximation of the continuous transform (v0.1)

Osman Yurekli

2020

View PDFchevron_right

Accelerating the Nonuniform Fast Fourier Transform [pdf: 582 Kb]

Leslie Greengard

View PDFchevron_right

Discrete Two-Dimensional Fourier Transform in Polar Coordinates Part I: Theory and Operational Rules

Natalie Baddour

Mathematics, 2019

View PDFchevron_right

Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates

Edem Dovlo, Natalie Baddour

MethodsX, 2015

View PDFchevron_right

Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates

Edem Dovlo

View PDFchevron_right

Rapid Computation of the Discrete Fourier Transform

marie dahleh

SIAM Journal on Scientific Computing, 1996

View PDFchevron_right

Grids and transforms for band-limited functions in a disk

Lucas Monzon

View PDFchevron_right

Gridding-based direct Fourier inversion of the three-dimensional ray transform

R. Renka

Journal of the Optical Society of America A, 2004

View PDFchevron_right

Selection of a convolution function for Fourier inversion using gridding (computerised tomography application)

A. Macovski

IEEE Transactions on Medical Imaging, 1991

View PDFchevron_right

Fast algorithms for the multidimensional discrete Fourier transform

abderrezak guessoum

IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986

View PDFchevron_right

Toolbox for the Computation of 2D Fourier Transforms in Polar Coordinates via Maple

Edem Dovlo, Natalie Baddour, Edem Dovlo

View PDFchevron_right

Fast algorithms for the discrete Fourier preprocessing transforms

Okan Ersoy

IEEE Transactions on Signal Processing, 1992

View PDFchevron_right

Fast Computation of Orthogonal Polar Harmonic Transforms

Thái Gia Hoàng

2012

View PDFchevron_right

UNIDFT: A package of optimized discrete fourier transforms

Giuseppe Salemi

Computer Physics Communications, 1987

View PDFchevron_right

New algorithms for computing directional discrete Fourier transforms

Marios S Pattichis

View PDFchevron_right

A new numerical Fourier transform in d-dimensions

Normand Beaudoin

IEEE Transactions on Signal Processing, 2003

View PDFchevron_right

Operational and convolution properties of two-dimensional Fourier transforms in polar coordinates

Natalie Baddour

View PDFchevron_right

Fast slant stack: A notion of radon transform for data in a cartesian grid which is rapidly computible, algebraically exact, geometrically faithful and invertible

Ronald Coifman

2001

View PDFchevron_right

Fast Computation of Partial Fourier Transforms

Sergey Fomel

Multiscale Modeling & Simulation, 2009

View PDFchevron_right

A comparative image analysis of discrete radial Fourier transforms

Gaoxiang Liu

Optics and Lasers in Engineering, 2010

View PDFchevron_right

New Algorithms for Computing a Single Component of the Discrete Fourier Transform

h.m. de oliveira

10th International Symposium on Communication Theory and Applications , 2009

View PDFchevron_right

Numerical Projection Method For Inverse Fourier Transform And Its Application

Andrey Krylov

Numerical Functional Analysis and Optimization, 2000

View PDFchevron_right

A Depth-First Iterative Algorithm for the Conjugate Pair Fast Fourier Transform

Amandine Verguet

IEEE Transactions on Signal Processing

View PDFchevron_right

Singular integral transforms and fast numerical algorithms

Prabir Daripa, Daoud Mashat

Numerical Algorithms, 1998

View PDFchevron_right

Inversion of the circular averages transform using the Funk transform

Birsen Yazici

Inverse Problems, 2011

View PDFchevron_right

Improved arithmetic Fourier transform algorithm

Anjan Ghosh

Applied Optics, 1991

View PDFchevron_right

Efficient image reconstruction using partial 2D Fourier transform

C. Chakrabarti

2008

View PDFchevron_right