Regulatory branch points affecting protein and lipid biosynthesis in the diatom Phaeodactylum tricornutum (original) (raw)
Related papers
PLOS One, 2008
Background. Diatoms are unicellular algae responsible for approximately 20% of global carbon fixation. Their evolution by secondary endocytobiosis resulted in a complex cellular structure and metabolism compared to algae with primary plastids. Methodology/Principal Findings. The whole genome sequence of the diatom Phaeodactylum tricornutum has recently been completed. We identified and annotated genes for enzymes involved in carbohydrate pathways based on extensive EST support and comparison to the whole genome sequence of a second diatom, Thalassiosira pseudonana. Protein localization to mitochondria was predicted based on identified similarities to mitochondrial localization motifs in other eukaryotes, whereas protein localization to plastids was based on the presence of signal peptide motifs in combination with plastid localization motifs previously shown to be required in diatoms. We identified genes potentially involved in a C4-like photosynthesis in P. tricornutum and, on the basis of sequence-based putative localization of relevant proteins, discuss possible differences in carbon concentrating mechanisms and CO 2 fixation between the two diatoms. We also identified genes encoding enzymes involved in photorespiration with one interesting exception: glycerate kinase was not found in either P. tricornutum or T. pseudonana. Various Calvin cycle enzymes were found in up to five different isoforms, distributed between plastids, mitochondria and the cytosol. Diatoms store energy either as lipids or as chrysolaminaran (a b-1,3-glucan) outside of the plastids. We identified various b-glucanases and large membrane-bound glucan synthases. Interestingly most of the glucanases appear to contain C-terminal anchor domains that may attach the enzymes to membranes. Conclusions/ Significance. Here we present a detailed synthesis of carbohydrate metabolism in diatoms based on the genome sequences of Thalassiosira pseudonana and Phaeodactylum tricornutum. This model provides novel insights into acquisition of dissolved inorganic carbon and primary metabolic pathways of carbon in two different diatoms, which is of significance for an improved understanding of global carbon cycles. Citation: Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, et al (2008) A Model for Carbohydrate Metabolism in the Diatom Phaeodactylum tricornutum
Modelling metabolism of the diatom Phaeodactylum tricornutum
Marine diatoms have potential as a biotechnological production platform, especially for lipid-derived products, including biofuels. Here we introduce some features of diatom metabolism, particularly with respect to photosynthesis, photorespiration and lipid synthesis and their differences relative to other photosynthetic eukaryotes. Since structural metabolic modelling of other photosynthetic organisms has been shown to be capable of representing their metabolic capabilities realistically, we briefly review the main approaches to this type of modelling. We then propose that genome-scale modelling of the diatom Phaeodactylum tricornutum, in response to varying light intensity, could uncover the novel aspects of the metabolic potential of this organism.
Applied Microbiology and Biotechnology, 2013
A detailed physiological and molecular analysis of lipid accumulation under a suite of conditions including nitrogen limitation, alkaline pH stress, bicarbonate supplementation, and organic acid supplementation was performed on the marine diatom Phaeodactylum tricornutum. For all tested conditions, nitrogen limitation was a prerequisite for lipid accumulation and the other culturing strategies only enhanced accumulation highlighting the importance of compounded stresses on lipid metabolism. Volumetric lipid levels varied depending on condition; the observed rankings from highest to lowest were for inorganic carbon addition (15 mM bicarbonate), organic acid addition (15 carbon mM acetate), and alkaline pH stress (pH9.0). For all lipidaccumulating cultures except acetate supplementation, a common series of physiological steps were observed. Upon extracellular nitrogen exhaustion, culture growth continued for approximately 1.5 cell doublings with decreases in specific protein and photosynthetic pigment content. As nitrogen limitation arrested cell growth, carbohydrate content decreased with a corresponding increase in lipid content. Addition of the organic carbon source acetate appeared to activate alternative metabolic pathways for lipid accumulation. Molecular level data on more than 50 central metabolism transcripts were measured using real-time PCR. Analysis of transcripts suggested the central metabolism pathways associated with bicarbonate transport, carbonic anhydrases, and C4 carbon fixations were important for lipid accumulation. Transcriptomic data also suggested that repurposing of phospholipids may play a role in lipid accumulation. This study provides a detailed physiological and molecular-level foundation for improved understanding of diatom nutrient cycling and contributes to a metabolic blueprint for controlling lipid accumulation in diatoms.
Current trends to comprehend lipid metabolism in diatoms
Progress in Lipid Research, 2018
Diatoms are the most dominant phytoplankton species in oceans and they continue to receive a great deal of attention because of their significant contributions in ecosystems and the environment. Due to triacylglycerol (TAG) profiles that are abundant in medium-chain fatty acids, diatoms have emerged to be better feed stocks for biofuel production, in comparison to the commonly studied green microalgal species (chlorophytes). Importantly, diatoms are also known for their high levels of the essential ω3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and are considered to be a promising alternative source of these components. The two most commonly exploited diatoms include Thalassiosira pseudonana and Phaeodactylum tricornutum. Although obvious similarities between diatoms and chlorophytes exist, there are some substantial differences in their lipid metabolism. This review provides an overview on lipid metabolism in diatoms, with P. tricornutum as the most explored model. Special emphasis is placed on the synthesis and incorporation of very long chain ω3 fatty acids into lipids. Furthermore, current approaches including genetic engineering and biotechnological methods aimed at improving and maximizing lipid production in P. tricornutum are also discussed.
Algal Research, 2018
Nitrogen deprivation increases the triacylglycerol (TAG) content in microalgae but also severely decreases the growth rate. Most approaches that attempted to increase TAG productivity by overexpression or knockdown of specific genes related to the regulation of the lipid synthesis have reported only little success. More insight into the molecular mechanisms related to lipid accumulation and impaired growth rate is needed to find targets for improving TAG productivity. By using the emerging "omics" approach, we comprehensively profiled the physiology, transcriptome, proteome and metabolome of the diatom Phaeodactylum tricornutum during steady state growth at both nitrogen limited and replete levels during light:dark cycles. Under nitrogen limited conditions, 22% (2699) of the total identified transcripts, 17% (543) of the proteins and 44% (345) of the metabolites were significantly differentially regulated compared to nitrogen replete growth conditions. Although nitrogen limitation was responsible for the majority of significant differential transcript, protein and metabolite accumulation, we also observed differential expression over a diurnal cycle. Nitrogen limitation mainly induced an upregulation of nitrogen fixation, central carbon metabolism and TCA cycle, while photosynthetic and ribosomal protein synthesis are mainly downregulated. Regulation of the lipid metabolism and the expression of predicted proteins involved in lipid processes suggest that lipid rearrangements may substantially contribute to TAG distribution. However, TAG synthesis is also limited by the reduced carbon flux through central metabolism. Future strain improvements should therefore focus on understanding and improving the carbon flux through central carbon metabolism, selectivity and activity of DGAT isoforms and lipase enzymes.
BioEnergy Research, 2012
One approach to achieve continuous overproduction of lipids in microalgal "cell factories" relies upon depletion or removal of nutrients that act as competing electron sinks (e.g., nitrate and sulfate). However, this strategy can only be effective for bioenergy applications if lipid is synthesized primarily de novo (from CO 2 fixation) rather than from the breakdown and interconversion of essential cellular components. In the marine diatom, Phaeodactylum tricornutum, it was determined, using 13 C-bicarbonate, that cell growth in nitrate (NO 3 − )-deprived cultures resulted predominantly in de novo lipid synthesis (60 % over 3 days), and this new lipid consisted primarily of triacylglycerides (TAGs). Nearly complete preservation of 12 C occurred in all previously existing TAGs in NO 3 − -deprived cultures and thus, further TAG accumulation would not be expected from inhibition of TAG lipolysis. In contrast, both high turnover and depletion of membrane lipids, phosphatidylcholines (PCs), were observed in NO 3 − -deprived cultures (both the headgroups and fatty acid chains), while less turnover was observed in NO 3 − replete cultures. Liquid chromatographytandem mass spectrometry mass spectra and 13 C labeling patterns of PC headgroups provided insight into lipid synthesis in marine diatoms, including suggestion of an internal pool of glycine betaine that feeds choline synthesis. It was also observed that 16C fatty acid chains incorporated into TAGs and PCs contained an average of 14 13 C carbons, indicating substantial incorporation of 13 C-bicarbonate into fatty acid chains under both nutrient states. Keywords Algae . Biodiesel . Nitrate . Nutrients . Fatty acid metabolism . De novo lipid biosynthesis . Phaeodactylum tricornutum Electronic supplementary material The online version of this article (
The Plant cell, 2014
The model marine diatom Phaeodactylum tricornutum can accumulate high levels of triacylglycerols (TAGs) under nitrogen depletion and has attracted increasing attention as a potential system for biofuel production. However, the molecular mechanisms involved in TAG accumulation in diatoms are largely unknown. Here, we employed a label-free quantitative proteomics approach to estimate differences in protein abundance before and after TAG accumulation. We identified a total of 1193 proteins, 258 of which were significantly altered during TAG accumulation. Data analysis revealed major changes in proteins involved in branched-chain amino acid (BCAA) catabolic processes, glycolysis, and lipid metabolic processes. Subsequent quantitative RT-PCR and protein gel blot analysis confirmed that four genes associated with BCAA degradation were significantly upregulated at both the mRNA and protein levels during TAG accumulation. The most significantly upregulated gene, encoding the β-subunit of me...
Investigating mixotrophic metabolism in the model diatom Phaeodactylum tricornutum
Diatoms are prominent marine microalgae, interesting not only from an ecological point of view, but also for their possible use in biotechnology applications. They can be cultivated in phototrophic conditions, using sunlight as the sole energy source. Some diatoms, however, can also grow in a mixotrophic mode, wherein both light and external reduced carbon contribute to biomass accumulation. In this study, we investigated the consequences of mixotrophy on the growth and metabolism of the pennate diatom Phaeodactylum tricornutum, using glycerol as the source of reduced carbon. Transcriptomics, metabolomics, metabolic modelling and physiological data combine to indicate that glycerol affects the central-carbon, carbon-storage and lipid metabolism of the diatom. In particular, provision of glycerol mimics typical responses of nitrogen limitation on lipid metabolism at the level of triacylglycerol accumulation and fatty acid composition. The presence of glycerol, despite provoking features reminiscent of nutrient limitation, neither diminishes photosynthetic activity nor cell growth, revealing essential aspects of the metabolic flexibility of these microalgae and suggesting possible biotechnological applications of mixotrophy. This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
The inhibition of TOR in the model diatom Phaeodactylum tricornutum promotes a get-fat growth regime
Algal Research, 2017
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Identification of Major Lipid Droplet Protein in a Marine Diatom Phaeodactylum tricornutum
Plant & cell physiology, 2016
Various kinds of organisms, including microalgae, accumulate neutral lipids in distinct intracellular compartments called lipid droplets. Generally, lipid droplets are generated from the endoplasmic reticulum and particular proteins localize on their surface. Some of these proteins function as structural proteins to prevent fusion between the lipid droplets, and the others could have an enzymatic role or might be involved in intracellular membrane trafficking. However, information about lipid droplet proteins in microalgae is scarce as compared with that in animals and land plants. We focused on the oil-producing, marine, pennate diatom Phaeodactylum tricornutum that forms lipid droplets during nitrogen deprivation and we investigated the proteins located on the lipid droplets. After 6 days of cultivation in a nitrate-deficient medium, the mature lipid droplets were isolated by sucrose density gradient centrifugation. Proteomic analyses revealed five proteins, with Stramenopile-type...
Related topics
Cited by
Biotechnology for biofuels, 2014
The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. Here we demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC 7002. Optimal growth conditions for co-cultivation of C. reinhardtii with wild-type and mutant strains of Synechococcus sp. 7002 were established. In co-culture, acetate produced by a glycogen synthase knockout mutant of Synechococcus sp. PCC 7002 was able to support the growth of a lipid-accumulating mutant strain of C. reinhardtii defective in starch production. Encapsulation of Synechococcus sp. PCC 7002 using an alginate matrix was successfully employed in co-cultures to limit growth and maintain the stability. The ability of immobilized strains of the cyanobacterium Synechococcus sp. PCC 7002 to produce acetate at a level adequa...
Biotechnology for biofuels, 2018
Microalgae accumulate lipids when exposed to stressful conditions such as nutrient limitation that can be used to generate biofuels. Nitrogen limitation or deprivation is a strategy widely employed to elicit this response. However, this strategy is associated with a reduction in the microalgal growth, leading to overall poor lipid productivities. Here, we investigated the combined effect of a reduced source of nitrogen (ammonium) and super-saturating light intensities on the growth and induction of lipid accumulation in two model but diverse microalgal species, and . We hypothesized that the lower energy cost of assimilating ammonium would allow the organisms to use more reductant power for lipid biosynthesis without compromising growth and that this would be further stimulated by the effect of high light (1000 µmol m s) stress. We studied the changes in growth and physiology of both species when grown in culture media that either contained nitrate or ammonium as the nitrogen source...
Effect of cell cycle arrest on intermediate metabolism in the marine diatomPhaeodactylum tricornutum
Proceedings of the National Academy of Sciences
The inhibitor NU 2058 [6-(cyclohexylmethoxy)-9H-purin-2-amine] leads to G1-phase cell cycle arrest in the marine diatom,Phaeodactylum tricornutum,by binding to two cyclin-dependent kinases, CDKA1 and CDKA2. NU 2058 has no effect on photosynthetic attributes, such as Fv/Fm, chlorophylla/cell, levels of D2 PSII subunits, or RbcL; however, cell cycle arrest leads to unbalanced growth whereby photosynthetic products that can no longer be used for cell division are redirected toward carbohydrates and triacylglycerols (TAGs). Arrested cells up-regulate most genes involved in fatty acid synthesis, including acetyl-CoA carboxylase, and three out of five putative type II diglyceride acyltransferases (DGATs), the enzymes that catalyze TAG production. Correlation of transcriptomes in arrested cells with a flux balance model forP. tricornutumpredicts that reactions in the mitochondrion that supply glycerate may support TAG synthesis. Our results reveal that sources of intermediate metabolites a...
Developing microalgal oil production for an outdoor photobioreactor
Journal of Applied Phycology
In this paper the preparations are described to develop a production of oil rich microalgal biomass under south European conditions. Ten microalgal species were compared in shake flasks in an incubator for potential for oil production. Potential oil production capacity was assayed as maximum total fatty acid (TFA) concentration and volumetric TFA productivity. TFA concentration ranged from 5 to 40% DW while TFA productivity rate ranged from 0 to 204 mg TFA L−1 day−1. To control the oil enrichment process in the outdoor microalgal batch culture, a quadratic equation was proposed, predicting the TFA concentration based on biomass inverse nitrogen quota. A concentrated substrate was developed to add to sea water, made from natural sea-salt and tap water.
The Scientific World Journal
Nitrogen stress increases lipids content in microalgae, the main feedstock for algal biodiesel. Sodium tungstate was used in this study to implement nitrogen stress by inhibiting nitrate reductase (NR) in Dunaliella tertiolecta. The reduction of NR activity was accompanied by reduction of chlorophyll and accumulation of lipids. One-stage and two-stage culture strategies were compared. One-stage culture raised total lipids from 18% (control) to 39% (w: w); however, two-stage culture raised lipids to 50% in which neutral lipids were enhanced 2.14 times. To assess the quality of biodiesel produced, fatty acid methyl esters (FAME) composition was studied. It showed a slight variation of unsaturation. In addition, some physical proprieties of biodiesel were estimated and showed that higher heating values were improved by tungstate treatment. In this study, we tried to shed light on some biological impact of NR inhibition in microalgae cells using sodium tungstate which could be exploited...
Frontiers in Bioengineering and Biotechnology
Scenedesmus quadricauda CASA CC202, a potent freshwater microalga is being used as a biofuel feedstock, which accumulates 2.27 fold lipid during nitrogen stress induction. Upon nitrogen starvation, S. quadricauda undergoes biochemical and metabolic changes that perturb the cell to cope up the stress condition. The nitrogen stress-induced biochemical changes in mitochondrion exhibits due to the oxidative stress-induced Reactive Oxygen species (ROS) generation at high membrane potential (ψ m). The predominant ROS generated during nitrogen starvation was H 2 O 2 , OH − , O 2 • − and to suppress them, scavenging enzymes such as peroxidase and catalase increased to about 23.16 and 0.79 U/ml as compared to control (20.2, 0.19 U/ml). The targeted metabolic analysis showed, stress-related non-proteinogenic amino acids and energy equivalents elevated during the initial hours of nitrogen starvation. The nitrogen stress-triggered biochemical and metabolic changes along with other cellular events eventually lead to lipid accumulation in S. quadricauda.
In haplodiplontic lineages, sexual reproduction occurs in haploid parents without meiosis. Although widespread in multicellular lineages such as brown algae (Phaeophyceae), haplodiplontic gametogenesis has been little studied at the molecular level. We addressed this by generating an annotated reference transcriptome for the gametophytic phase of the sugar kelp,Saccharina latissima. Transcriptional profiles of microscopic male and female gametophytes were analysed at four time points during the transition from vegetative growth to gametogenesis. Gametogenic signals resulting from a switch in culture irradiance from red to white light activated a core set of genes in a sex-independent manner, involving rapid activation of ribosome biogenesis, transcription and translation related pathways, with several acting at the post-transcriptional or post-translational level. Additional genes regulating nutrient acquisition and key carbohydrate-energy pathways were also identified. Candidate se...
The effects of phosphorus limitation on carbon metabolism in diatoms
Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2017
Phosphorus is an essential element for life, serving as an integral component of nucleic acids, lipids and a diverse range of other metabolites. Concentrations of bioavailable phosphorus are low in many aquatic environments. Microalgae, including diatoms, apply physiological and molecular strategies such as phosphorus scavenging or recycling as well as adjusting cell growth in order to adapt to limiting phosphorus concentrations. Such strategies also involve adjustments of the carbon metabolism. Here, we review the effect of phosphorus limitation on carbon metabolism in diatoms. Two transcriptome studies are analysed in detail, supplemented by other transcriptome, proteome and metabolite data, to gain an overview of different pathways and their responses. Phosphorus, nitrogen and silicon limitation responses are compared, and similarities and differences discussed. We use the current knowledge to propose a suggestive model for the carbon flow in phosphorus-replete and phosphorus-lim...
Carbon Partitioning in Green Algae (Chlorophyta) and the Enolase Enzyme
Metabolites, 2014
The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae.
Frontiers in Microbiology
Mucor circinelloides WJ11, an oleaginous filamentous fungus, produces 36% lipid of its cell dry weight when cultured in a high C/N ratio medium, however, the yield of γ-linolenic acid (GLA) is insufficient to make it competitive with other plant sources. To increase the GLA content in M. circinelloides WJ11, this fungus was engineered by overexpression of its key genes such as Δ6-, Δ12-, and Δ9-desaturases involved in GLA production. Firstly, we tried to overexpress two Δ6-desaturase isozymes to determine which one played important role in GLA synthesis. Secondly, Δ6-and Δ12-desaturase were co-overexpressed to check whether linoleic acid (LA), the precursor for GLA synthesis, is a limiting factor or not. Moreover, we tried to explore the effects of simultaneous overexpression of Δ6-, Δ12-, and Δ9-desaturases on GLA production. Our results showed that overexpression (1 gene) of DES61 promoted higher GLA content (21% of total fatty acids) while co-overexpressing (2 genes) DES61 and DE...
Related papers
European Journal of Phycology, 2019
Nitrogen (N) and phosphorus (P) limitations induce triacylglycerol (TAG) accumulation and membrane lipid remodelling in the marine diatom Phaeodactylum tricornutum. However, a clear understanding of the metabolic reorientation is still lacking. Carbon partitioning is of great interest because this microalga produces various highly valuable molecules such as lipids and polyunsaturated fatty acids. This study compared growth, photosynthetic activity, biochemical and transcriptional responses of P. tricornutum throughout batch culture under N or P limitation. The integrated results show that the photosynthetic intensity was greatly reduced under N or P limitation. Under N limitation, the degradation and re-use of cellular N-containing compounds contributed to TAG accumulation, whilst P limitation favoured TAG accumulation due to the efficiency of carbon fixation, without massive degradation of essential compounds at cellular level. There was no difference in the partitioning of carbon to neutral lipids between N and P limitation. Substitution of phospholipids with betaine lipids appeared to be a P-specific acclimation strategy in P. tricornutum, which was largely regulated at the gene expression level. Betaine lipid synthesis was induced by P limitation. The lipid remodelling began once the medium became deficient in P. While the phospholipid biosynthesis pathway was not completely inhibited, a shift of lipid classes occurred immediately after their synthesis via phospholipid-recycling mechanisms.
The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum
The EMBO journal, 2017
Diatoms are amongst the most important marine microalgae in terms of biomass, but little is known concerning the molecular mechanisms that regulate their versatile metabolism. Here, the pennate diatom Phaeodactylum tricornutum was studied at the metabolite and transcriptome level during nitrogen starvation and following imposition of three other stresses that impede growth. The coordinated upregulation of the tricarboxylic acid (TCA) cycle during the nitrogen stress response was the most striking observation. Through co-expression analysis and DNA binding assays, the transcription factor bZIP14 was identified as a regulator of the TCA cycle, also beyond the nitrogen starvation response, namely in diurnal regulation. Accordingly, metabolic and transcriptional shifts were observed upon overexpression of bZIP14 in transformed P. tricornutum cells. Our data indicate that the TCA cycle is a tightly regulated and important hub for carbon reallocation in the diatom cell during nutrient sta...
Microbial Cell Factories, 2013
Background Heterotrophic fermentation using simple sugars such as glucose is an established and cost-effective method for synthesizing bioproducts from bacteria, yeast and algae. Organisms incapable of metabolizing glucose have limited applications as cell factories, often despite many other advantageous characteristics. Therefore, there is a clear need to investigate glucose metabolism in potential cell factories. One such organism, with a unique metabolic network and a propensity to synthesize highly reduced compounds as a large fraction of its biomass, is the marine diatom Phaeodactylum tricornutum (Pt). Although Pt has been engineered to metabolize glucose, conflicting lines of evidence leave it unresolved whether Pt can natively consume glucose. Results Isotope labeling experiments in which Pt was mixotrophically grown under light on 100% U-13C glucose and naturally abundant (~99% 12C) dissolved inorganic carbon resulted in proteinogenic amino acids with an average 13C-enrichme...
Journal of Proteome Research, 2014
Protein phosphorylation on serine, threonine, and tyrosine (Ser/ Thr/Tyr) is well established as a key regulatory posttranslational modification used in signal transduction to control cell growth, proliferation, and stress responses. However, little is known about its extent and function in diatoms. Phaeodactylum tricornutum is a unicellular marine diatom that has been used as a model organism for research on diatom molecular biology. Although more than 1000 protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted in P. tricornutum, no phosphorylation event has so far been revealed by classical biochemical approaches. Here, we performed a global phosphoproteomic analysis combining protein/peptide fractionation, TiO 2 enrichment, and LC−MS/MS analyses. In total, we identified 264 unique phosphopeptides, including 434 in vivo phosphorylated sites on 245 phosphoproteins. The phosphorylated proteins were implicated in the regulation of diverse biological processes, including signaling, metabolic pathways, and stress responses. Six identified phosphoproteins were further validated by Western blotting using phospho-specific antibodies. The functions of these proteins are discussed in the context of signal transduction networks in P. tricornutum. Our results advance the current understanding of diatom biology and will be useful for elucidating the phosphor-relay signaling networks in this model diatom.
Marine Drugs
Oleaginous diatoms accumulate lipids of biotechnological interest when exposed to nutrient stress conditions such as nitrogen starvation. While accumulation mechanisms are well-known and have been engineered to improve lipid production, degradation mechanisms remain poorly investigated in diatoms. Identifying lipid-degrading enzymes is the initial step to understanding the catabolic processes. In this study, an in silico screening of the genome of Phaeodactylum tricornutum led to the identification of 57 putative triacylglycerol lipases (EC 3.1.1.3) grouped in 4 families. Further analysis revealed the presence of conserved domains and catalytic residues of lipases. Physico-chemical characteristics and subcellular localization predictions highlighted that a majority of these putative proteins are hydrophilic and cytosolic, suggesting they could be recruited to lipid droplets directly from the cytosol. Among the 57 identified putative proteins, three lipases were identified as possibl...
Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum
Gene, 2007
Research into diatom biology has now entered the post-genomics era, following the recent completion of the Thalassiosira pseudonana and Phaeodactylum tricornutum whole genome sequences and the establishment of Expressed Sequence Tag (EST) databases. The thorough exploitation of these resources will require the development of molecular tools to analyze and modulate the function of diatom genes in vivo. Towards this objective, we report here the identification of several reference genes that can be used as internal standards for gene expression studies by quantitative real-time PCR (qRT-PCR) in P. tricornutum cells grown over a diel cycle. In addition, we describe a series of diatom expression vectors based on Invitrogen Gateway technology for high-throughput protein tagging and overexpression studies in P. tricornutum. We demonstrate the utility of the diatom Destination vectors for determining the subcellular localization of a protein of interest and for immunodetection. The availability of these new resources significantly enriches the molecular toolbox for P. tricornutum and provides the diatom research community with well defined high-throughput methods for the analysis of diatom genes and proteins in vivo.
Proceedings of the National Academy of Sciences, 2017
Significance We examined the effect of cell cycle arrest in the diatom Phaeodactylum tricornutum. When the cycle is disrupted in G1 phase, it leads to unbalanced growth and the accumulation of storage products, especially lipids. In contrast to nitrogen-stressed cells, however, cells arrested in G1 do not cannibalize photosynthetic proteins and show little change in photosynthetic energy conversion efficiency. This study provides insight into how intermediate metabolism is scheduled with respect to the cell cycle in a marine diatom.
Biotechnology for Biofuels
Background: Oleaginous microalgae represent a valuable resource for the production of high-value molecules. Considering the importance of omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) for human health and nutrition the yields of high-value eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) require significant improvement to meet demand; however, the current cost of production remains high. A promising approach is to metabolically engineer strains with enhanced levels of triacylglycerols (TAGs) enriched in EPA and DHA. Results: Recently, we have engineered the marine diatom Phaeodactylum tricornutum to accumulate enhanced levels of DHA in TAG. To further improve the incorporation of omega-3 LC-PUFAs in TAG, we focused our effort on the identification of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT) capable of improving lipid production and the incorporation of DHA in TAG. DGAT is a key enzyme in lipid synthesis. Following a diatom based in vivo screen of candidate DGATs, a native P. tricornutum DGAT2B was taken forward for detailed characterisation. Overexpression of the endogenous P. tricornutum DGAT2B was confirmed by qRT-PCR and the transgenic strain grew successfully in comparison to wildtype. PtDGAT2B has broad substrate specificity with preferences for C16 and LC-PUFAs acyl groups. Moreover, the overexpression of an endogenous DGAT2B resulted in higher lipid yields and enhanced levels of DHA in TAG. Furthermore, a combined overexpression of the endogenous DGAT2B and ectopic expression of a Δ5-elongase showed how iterative metabolic engineering can be used to increase DHA and TAG content, irrespective of nitrogen treatment. Conclusion: This study provides further insight into lipid metabolism in P. tricornutum and suggests a metabolic engineering approach for the efficient production of EPA and DHA in microalgae.
Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress
Proceedings of the National Academy of Sciences of the United States of America, 2015
Diatoms are unicellular algae that accumulate significant amounts of triacylglycerols as storage lipids when their growth is limited by nutrients. Using biochemical, physiological, bioinformatics, and reverse genetic approaches, we analyzed how the flux of carbon into lipids is influenced by nitrogen stress in a model diatom, Phaeodactylum tricornutum. Our results reveal that the accumulation of lipids is a consequence of remodeling of intermediate metabolism, especially reactions in the tricarboxylic acid and the urea cycles. Specifically, approximately one-half of the cellular proteins are cannibalized; whereas the nitrogen is scavenged by the urea and glutamine synthetase/glutamine 2-oxoglutarate aminotransferase pathways and redirected to the de novo synthesis of nitrogen assimilation machinery, simultaneously, the photobiological flux of carbon and reductants is used to synthesize lipids. To further examine how nitrogen stress triggers the remodeling process, we knocked down th...
Foreign gene recruitment to the fatty acid biosynthesis pathway in diatoms
Mobile Genetic Elements, 2013
Diatoms are highly successful marine and freshwater algae that contribute up to 20% of global carbon fixation. These species are leading candidates for biofuel production owing to ease of culturing and high fatty acid content. To assist in strain improvement and downstream applications for potential use as a biofuel, it is important to understand the evolution of lipid biosynthesis in diatoms. The evolutionary history of diatoms is however complicated by likely multiple endosymbioses involving the capture of foreign cells and horizontal gene transfer into the host genome. Using a phylogenomic approach, we assessed the evolutionary history of 12 diatom genes putatively encoding functions related to lipid biosynthesis. We found evidence of gene transfer likely from a green algal source for seven of these genes, with the remaining showing either vertical inheritance or evolutionary histories too complicated to interpret given current genome data. The functions of horizontally transferred genes encompass all aspects of lipid biosynthesis (initiation, biosynthesis, and desaturation of fatty acids) as well as fatty acid elongation, and are not restricted to plastid-targeted proteins. Our findings demonstrate that the transfer, duplication, and subfunctionalization of genes were key steps in the evolution of lipid biosynthesis in diatoms and other photosynthetic eukaryotes. This target pathway for biofuel research is highly chimeric and surprisingly, our results suggest that research done on related genes in green algae may have application to diatom models.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.