Large deviations for some fast stochastic volatility models by viscosity methods (original) (raw)

Abstract

We consider the short time behaviour of stochastic systems affected by a stochastic volatility evolving at a faster time scale. We study the asymptotics of a logarithmic functional of the process by methods of the theory of homogenisation and singular perturbations for fully nonlinear PDEs. We point out three regimes depending on how fast the volatility oscillates relative to the horizon length. We prove a large deviation principle for each regime and apply it to the asymptotics of option prices near maturity.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (38)

  1. O. Alvarez, M. Bardi: Viscosity solutions methods for singular perturbations in deterministic and stochastic control, SIAM J. Control Optim. 40 (2001/02), 1159-1188.
  2. O. Alvarez, M. Bardi: Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result, Arch. Ration. Mech. Anal. 170 (2003), 17-61.
  3. O. Alvarez, M. Bardi: Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations, Mem. Amer. Math. Soc. (2010), no. 960, vi+77 pp.
  4. O. Alvarez, M. Bardi, C. Marchi, Multiscale problems and homogenization for second-order Hamilton-Jacobi equations, J. Differential Equations 243 (2007) 349-387.
  5. M. Avellaneda, D. Boyer-Olson, J. Busca, P. Friz, Application of large deviation methods to the pricing of index options in finance, C.R. Math. Acad. Sci. Paris (2003), 336, 263-266.
  6. M. Arisawa, P.-L. Lions, On ergodic stochastic control, Comm. Partial Differential Equations, 23 pp.2187-2217 (1998).
  7. S. Balbinot, Valore critico per Hamiltoniane non coercive e applicazioni a problemi di omo- geneizzazione, Master thesis, University of Padova, 2012.
  8. M. Bardi, I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton- Jacobi-Bellman equations, Birkhäuser Boston, Inc., Boston, MA, 1997.
  9. M. Bardi, A. Cesaroni, L. Manca,Convergence by viscosity methods in multiscale financial models with stochastic volatility, Siam J. Financial Math. 1 (2010), pp. 230-265.
  10. M. Bardi, A. Cesaroni, Optimal control with random parameters: a multiscale approach, Eur. J. Control 17 (2011), no. 1, 30-45.
  11. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques and Applications 17, Springer-Verlag.
  12. G. Barles, B. Perthame, Comparison principle for Dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations. Appl. Math. Optim. 21 (1990), 21-44.
  13. F. Camilli, A. Cesaroni, C. Marchi, Homogenization and vanishing viscosity in fully nonlinear elliptic equations: rate of convergence estimates. Adv. Nonlinear Stud. 11 (2011), 405-428.
  14. A. Cutrì, F. Da Lio, Comparison and existence results for evolutive non-coercive first-order Hamilton-Jacobi equations. ESAIM Control Optim. Calc. Var. 13 (2007), no. 3, 484-502.
  15. F. Da Lio, O. Ley, Uniqueness results for second order Bellman-Isaacs equations under qua- dratic growth assumptions and applications, SIAM J. Control Optim., 45 no 1 (2006), 74-106.
  16. G. Dal Maso, H. Frankowska, Value functions for Boltza problems with discontinuous la- grangian and Hamilton-Jacobi inequality, ESAIM Control Optim. Calc. Var. 5 (2000), 369- 393.
  17. A. Dembo, O. Zeitouni, Large deviations techniques and applications , Springer, New York, 1998.
  18. P. Dupuis, K. Spiliopoulos, Large deviations for multiscale problems via weak convergence methods, Stoch. Process. Appl. 122 (2012), 1947-1987.
  19. L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 359-375.
  20. L. C. Evans, H. Ishii, A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities. Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 1-20.
  21. J. Feng, M. Forde, J.-P. Fouque, Short-maturity asymptotics for a fast mean-reverting Heston stochastic volatility model, SIAM J. Financial Math. 1 (2010) 126-141.
  22. J. Feng, J.-P. Fouque, R. Kumar, Small time asymptotic for fast mean-reverting stochstic volatility models, Ann. Appl. Probab. 22 (2012), no. 4, 1541-1575.
  23. J. Feng, T. G. Kurtz, Large deviations for stochastic processes. American Mathematical Society, Providence, RI, 2006.
  24. W.H. Fleming, H. M. Soner, Controlled Markos processes and viscosity solutions, Springer, New York (2006).
  25. J.-P. Fouque, G. Papanicolaou, K.R. Sircar, Derivatives in financial markets with sto- chastic volatility. Cambridge university press, Cambridge, 2000.
  26. J.-P. Fouque, G. Papanicolaou, R. Sircar, K. Solna: Singular perturbations in option pricing, SIAM J. Appl. Math. 63 (2003), no. 5, 1648-1665.
  27. J.-P. Fouque, G. Papanicolaou, R. Sircar, K. Solna: Multiscale stochastic volatility asymp- totics, Multiscale Model. Simul. 2 (2003), no. 1, 22-42.
  28. J.-P. Fouque, G. Papanicolaou, R. Sircar, K. Solna: Multiscale stochastic volatility for equity, interest rate, and credit derivatives. Cambridge University Press, Cambridge, 2011.
  29. D. Ghilli: Ph.D. thesis, University of Padova, in preparation.
  30. Y. Kabanov and S. Pergamenshchikov: Two-scale stochastic systems. Asymptotic analysis and control, Springer-Verlag, Berlin, 2003.
  31. H. Kaise, S. Sheu, On the structure of solution of ergodic type Bellman equation related to risk-sensitive control, Ann. Probab. 34, no 1, (2006), 284-320.
  32. H. J. Kushner, Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems, Birkhäuser, Boston 1990.
  33. H.J. Kushner, Large deviations for two-time-scale diffusions, with delays, Appl. Math. Optim. 62 (2010), no. 3, 295-322.
  34. R. Lipster, Large deviations for two scaled diffusions, Probab. Theory Relat. Fields 106 no 1 (1996), 71-104.
  35. K. Spiliopoulos, Large Deviations and Importance Sampling for Systems of Slow-Fast Motion, Appl Math Optim 67 (2013), 123-161.
  36. A. Takahashi, K. Yamamoto, A Remark on a Singular Perturbation Method for Option Pricing under a Stochastic Volatility, Asia-Pacific Financial Markets, 16 (2009), 333-345.
  37. A. Yu. Veretennikov, On large deviations for SDEs with small diffusion and averaging. Sto- chastic Process. Appl. 89 (2000), no. 1, 69-79.
  38. D. Williams, Probability with Martingales, Cambridge University Press, 1991.