Coordinated expression of cell death genes regulates neuroblast apoptosis (original) (raw)
Related papers
Reaper is required for neuroblast apoptosis during Drosophila development
Development
Developmentally regulated apoptosis in Drosophila requires the activity of the reaper (rpr), grim and head involution defective (hid) genes. The expression of these genes is differentially regulated, suggesting that there are distinct requirements for their proapoptotic activity in response to diverse developmental and environmental inputs. To examine this hypothesis, a mutation that removes the rpr gene was generated. In flies that lack rpr function, most developmental apoptosis was unaffected. However, the central nervous systems of rpr null flies were very enlarged. This was due to the inappropriate survival of both larval neurons and neuroblasts. Importantly, neuroblasts rescued from apoptosis remained functional, continuing to proliferate and generating many extra neurons. Males mutant for rpr exhibited behavioral defects resulting in sterility. Although both the ecdysone hormone receptor complex and p53 directly regulate rpr transcription, rpr was found to play a limited role in inducing apoptosis in response to either of these signals.
FEBS letters, 2016
Nervous system development is a process that integrates cell proliferation, differentiation, and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic, and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerged while integrating this information.
Proceedings of the National Academy of Sciences, 1997
In Drosophila, the chromosomal region 75C1-2 contains at least three genes, reaper (rpr), head involution defective (hid), and grim, that have important functions in the activation of programmed cell death. To better understand how cells are killed by these genes, we have utilized a well defined set of embryonic central nervous system midline cells that normally exhibit a specific pattern of glial cell death. In this study we show that both rpr and hid are expressed in dying midline cells and that the normal pattern of midline cell death requires the function of multiple genes in the 75C1-2 interval. We also utilized the P[UAS]͞P[Gal4] system to target expression of rpr and hid to midline cells. Targeted expression of rpr or hid alone was not sufficient to induce ectopic midline cell death. However, expression of both rpr and hid together rapidly induced ectopic midline cell death that resulted in axon scaffold defects characteristic of mutants with abnormal midline cell development. Midline-targeted expression of the baculovirus p35 protein, a caspase inhibitor, blocked both normal and ectopic rpr-and hid-induced cell death. Taken together, our results suggest that rpr and hid are expressed together and cooperate to induce programmed cell death during development of the central nervous system midline.
Programmed cell death in the embryonic central nervous system of Drosophila melanogaster
Development, 2007
Although programmed cell death (PCD) plays a crucial role throughout Drosophila CNS development, its pattern and incidence remain largely uninvestigated. We provide here a detailed analysis of the occurrence of PCD in the embryonic ventral nerve cord (VNC). We traced the spatio-temporal pattern of PCD and compared the appearance of, and total cell numbers in, thoracic and abdominal neuromeres of wild-type and PCD-deficient H99 mutant embryos. Furthermore, we have examined the clonal origin and fate of superfluous cells in H99 mutants by DiI labeling almost all neuroblasts, with special attention to segment-specific differences within the individually identified neuroblast lineages. Our data reveal that although PCD-deficient mutants appear morphologically well-structured, there is significant hyperplasia in the VNC. The majority of neuroblast lineages comprise superfluous cells, and a specific set of these lineages shows segment-specific characteristics. The superfluous cells can be specified as neurons with extended wild-type-like or abnormal axonal projections, but not as glia. The lineage data also provide indications towards the identities of neuroblasts that normally die in the late embryo and of those that become postembryonic and resume proliferation in the larva. Using cell-specific markers we were able to precisely identify some of the progeny cells, including the GW neuron, the U motoneurons and one of the RP motoneurons, all of which undergo segment-specific cell death. The data obtained in this analysis form the basis for further investigations into the mechanisms involved in the regulation of PCD and its role in segmental patterning in the embryonic CNS.
Programmed death during Drosophila embryogenesis
Development
changes responsible for the selective affinity to these dyes. Cell death begins at stage 11 (~7 hours) of embryogenesis and thereafter becomes widespread, affecting many different tissues and regions of the embryo. Although the distribution of dying cells changes drastically over time, the overall pattern of cell death is highly reproducible for any given developmental stage. Detailed analysis of cell death in the central nervous system of stage 16 embryos (13-16 hours) revealed asymmetries in the exact number and position of dying cells on either side of the midline, suggesting that the decision to die may not be strictly predetermined at this stage. This work provides the basis for further molecular genetic studies on the control and execution of programmed cell death in Drosophila.
grim promotes programmed cell death of Drosophila microchaete glial cells
Mechanisms of Development, 2010
The Inhibitor of apoptosis (IAP) antagonists Reaper (Rpr), Grim and Hid are central regulators of developmental apoptosis in Drosophila. Ectopic expression of each is sufficient to trigger apoptosis, and hid and rpr have been shown to be important for programmed cell death (PCD). To investigate the role for grim in PCD, a grim null mutant was generated. grim was not a key proapoptotic gene for embryonic PCD, confirming that grim cooperates with rpr and hid in embryogenesis. In contrast, PCD of glial cells in the microchaete lineage required grim, identifying a death process dependent upon endogenous grim. Grim associates with mitochondria and has been shown to activate a mitochondrial death pathway distinct from IAP antagonization; therefore, the Drosophila bcl-2 genes buffy and debcl were investigated for genetic interaction with grim. Loss of buffy led to microchaete glial cell survival and suppressed death in the eye induced by ectopic Grim. This is the first example of a developmental PCD process influenced by buffy, and places buffy in a proapoptotic role. PCD of microchaete glial cells represents an exceptional opportunity to study the mitochondrial proapoptotic process induced by Grim.
Drosophila sickle Is a Novel grim-reaper Cell Death Activator
Current Biology Cb, 2002
conserved mechanism to regulate cell death activation. Interestingly, Reaper and Grim also contain a second 2 Molecular and Cell Biology Graduate Program 3 Program for Neuroscience and Behavior region of similarity, the Trp-block, that is centered around the single Trp residue in these proteins [13].
Plos Genetics, 2020
Neural circuitry for mating and reproduction resides within the terminal segments of central nervous system (CNS) which express Hox paralogous group 9-13 (in vertebrates) or Abdominal-B (Abd-B) in Drosophila. Terminal neuroblasts (NBs) in A8-A10 segments of Drosophila larval CNS are subdivided into two groups based on expression of transcription factor Doublesex (Dsx). While the sex specific fate of Dsx-positive NBs is well investigated, the fate of Dsx-negative NBs is not known so far. Our studies with Dsx-negative NBs suggests that these cells, like their abdominal counterparts (in A3-A7 segments) use Hox, Grai-nyhead (Grh) and Notch to undergo cell death during larval development. This cell death also happens by transcriptionally activating RHG family of apoptotic genes through a common apoptotic enhancer in early to mid L3 stages. However, unlike abdominal NBs (in A3-A7 segments) which use increasing levels of resident Hox factor Abdominal-A (Abd-A) as an apoptosis trigger, Dsx-negative NBs (in A8-A10 segments) keep the levels of resident Hox factor Abd-B constant. These cells instead utilize increasing levels of the temporal transcription factor Grh and a rise in Notch activity to gain apoptotic competence. Biochemical and in vivo analysis suggest that Abdominal-A and Grh binding motifs in the common apo-ptotic enhancer also function as Abdominal-B and Grh binding motifs and maintains the enhancer activity in A8-A10 NBs. Finally, the deletion of this enhancer by the CRISPR-Cas9 method blocks the apoptosis of Dsx-negative NBs. These results highlight the fact that Hox dependent NB apoptosis in abdominal and terminal regions utilizes common molecular players (Hox, Grh and Notch), but seems to have evolved different molecular strategies to pattern CNS. PLOS GENETICS PLOS Genetics | https://doi.org/10.1371/journal.pgen.
Developmentally programmed cell death in Drosophila
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2013
During the development of metazoans, programmed cell death (PCD) is essential for tissue patterning, removal of unwanted cells and maintaining homeostasis. In the past 20 years Drosophila melanogaster has been one of the systems of choice for studies involving developmental cell death, providing an ideal genetically tractable model of intermediary complexity between Caenorhabditis elegans and mammals. The lessons learned from studies using Drosophila indicate both the conserved nature of the many cell death pathways as well as novel and unexpected mechanisms. In this article we review the understanding of PCD during Drosophila development, highlighting the key mechanisms that are evolutionarily conserved as well as apparently unusual pathways, which indicate divergence, but provide evidence of complexity acquired during organismic evolution. This article is part of a Special Section entitled: Cell Death Pathways.