A Magnetic and Moessbauer Spectral Study of Core/Shell Structured Fe/Au Nanoparticles (original) (raw)
Fe/Au nanoparticles have been chemically synthesized through a reverse micelle reaction and investigated by both conventional and synchrotron based x-ray diffraction and by magnetic and Moessbauer spectral studies. The powder x-ray diffraction patterns reveal both the presence of crystalline alpha-iron and gold and the absence of any crystalline iron oxides or other crystalline products. First-order reversal curves, along with the major hysteresis loops of the Fe/Au nanoparticles have been measured as a function of time in order to investigate the evolution of their magnetic properties. The iron-57 Moessbauer spectra of both uncoated iron nanoparticles and the Fe/Au nanoparticles have been measured at 78 and 295 K and indicate that two major iron containing components are present, namely the expected alpha-iron and the unexpected amorphous Fe1-xBx alloy; several poorly crystallized ordered iron(III) oxide components as well as paramagnetic iron(II) and iron(III) components are also observed. These results indicate that the Fe-core/Au-shell nanoparticles synthesized through reverse micelles are far more complex that had been believed.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.