Signal Strength Dictates Phosphoinositide 3-Kinase Contribution to Ras/Extracellular Signal-Regulated Kinase 1 and 2 Activation via Differential Gab1/Shp2 Recruitment: Consequences for Resistance to Epidermal Growth Factor Receptor Inhibition (original) (raw)

Abstract

Phosphoinositide 3-kinase (PI3K) participates in extracellular signal-regulated kinase 1 and 2 (ERK1-2) activation according to signal strength, through unknown mechanisms. We report herein that Gab1/Shp2 constitutes a PI3K-dependent checkpoint of ERK1-2 activation regulated according to signal intensity. Indeed, by up-and down-regulation of signal strength in different cell lines and through different methods, we observed that Gab1/Shp2 and Ras/ERK1-2 in concert become independent of PI3K upon strong epidermal growth factor receptor (EGFR) stimulation and dependent on PI3K upon limited EGFR activation. Using Gab1 mutants, we observed that this conditional role of PI3K is dictated by the EGFR capability of recruiting Gab1 through Grb2 or through the PI3K lipid product PIP 3 , according to a high or weak level of receptor stimulation, respectively. In agreement, Grb2 siRNA generates, in cells with maximal EGFR stimulation, a strong dependence on PI3K for both Gab1/Shp2 and ERK1-2 activation. Therefore, Ras/ERK1-2 depends on PI3K only when PIP 3 is required to recruit Gab1/Shp2, which occurs only under weak EGFR mobilization. Finally, we show that, in glioblastoma cells displaying residual EGFR activation, this compensatory mechanism becomes necessary to efficiently activate ERK1-2, which could probably contribute to tumor resistance to EGFR inhibitors.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (38)

  1. Chou, M. M., W. Hou, J. Johnson, L. K. Graham, M. H. Lee, C. S. Chen, A. C. Newton, B. S. Schaffhausen, and A. Toker. 1998. Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr. Biol. 8:1069-1077.
  2. Cunnick, J. M., J. F. Dorsey, T. Munoz-Antonia, L. Mei, and J. Wu. 2000. Requirement of SHP2 binding to Gab1 for MAPK activation in response to LPA and EGF. J. Biol. Chem. 275:13842-13848.
  3. Dance, M., A. Montagner, A. Yart, B. Masri, Y. Audigier, B. Perret, J. P. Salles, and P. Raynal. 2006. The adaptor protein Gab1 couples the stimu- lation of vascular endothelial growth factor-2 to the activation of phospho- inositide 3-kinase. J. Biol. Chem. 281:23285-23295.
  4. de Rooij, J., and J. L. Bos. 1997. Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14:623-625.
  5. Downward, J. 2003. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3:11-22.
  6. Duckworth, B. C., and L. C. Cantley. 1997. Conditional inhibition of the mitogen-activated protein kinase cascade by wortmannin. Dependence of signal strength. J. Biol. Chem. 272:27665-27670.
  7. Engelman, J. A., K. Zejnullahu, T. Mitsudomi, Y. Song, C. Hyland, J. O. Park, N. Lindeman, C. M. Gale, X. Zhao, J. Christensen, T. Kosaka, A. J. Holmes, A. M. Rogers, F. Cappuzzo, T. Mok, C. Lee, B. E. Johnson, L. C. Cantley, and P. A. Janne. 2007. MET amplification leads to gefitinib resis- tance in lung cancer by activating ERBB3 signaling. Science 316:1039-1043.
  8. Gu, H., and B. G. Neel. 2003. The "Gab" in signal transduction. Trends Cell Biol. 13:122-130.
  9. Gupta, S., A. R. Ramjaun, P. Haiko, Y. Wang, P. H. Warne, B. Nicke, E. Nye, G. Stamp, K. Alitalo, and J. Downward. 2007. Binding of ras to phospho- inositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129:957-968.
  10. Hanna, N., A. Montagner, W. H. Lee, M. Miteva, M. Vidal, M. Vidaud, B. Parfait, and P. Raynal. 2006. Reduced phosphatase activity of SHP-2 in LEOPARD syndrome: consequences for PI3K binding on Gab1. FEBS Lett. 580:2477-2482.
  11. He, T. C., S. Zhou, L. T. da Costa, J. Yu, K. W. Kinzler, and B. Vogelstein. 1998. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95:2509-2514.
  12. Ihle, N. T., G. Paine-Murrieta, M. I. Berggren, A. Baker, W. R. Tate, P. Wipf, R. T. Abraham, D. L. Kirkpatrick, and G. Powis. 2005. The phosphatidyl- inositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non-small cell lung cancer xenografts. Mol. Cancer Ther. 4:1349-1357.
  13. Isakoff, S. J., T. Cardozo, J. Andreev, Z. Li, K. M. Ferguson, R. Abagyan, M. A. Lemmon, A. Aronheim, and E. Y. Skolnik. 1998. Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J. 17:5374-5387.
  14. Itoh, M., Y. Yoshida, K. Nishida, M. Narimatsu, M. Hibi, and T. Hirano. 2000. Role of Gab1 in heart, placenta, and skin development and growth factor-and cytokine-induced extracellular signal-regulated kinase mitogen- activated protein kinase activation. Mol. Cell. Biol. 20:3695-3704.
  15. Kassouf, W., C. P. Dinney, G. Brown, D. J. McConkey, A. J. Diehl, M. Bar-Eli, and L. Adam. 2005. Uncoupling between epidermal growth factor receptor and downstream signals defines resistance to the antiproliferative effect of Gefitinib in bladder cancer cells. Cancer Res. 65:10524-10535.
  16. Kiyatkin, A., E. Aksamitiene, N. I. Markevich, N. M. Borisov, J. B. Hoek, and B. N. Kholodenko. 2006. Scaffolding protein GAB1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J. Biol. Chem. 281:19925-19938.
  17. Li, B., C. M. Chang, M. Yuan, W. G. McKenna, and H. K. Shu. 2003. Resistance to small molecule inhibitors of epidermal growth factor receptor in malignant gliomas. Cancer Res. 63:7443-7450.
  18. Mattoon, D. R., B. Lamothe, I. Lax, and J. Schlessinger. 2004. The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol. 2:24.
  19. Montagner, A., A. Yart, M. Dance, B. Perret, J. P. Salles, and P. Raynal. 2005. A novel role for Gab1 and SHP2 in EGF-induced Ras activation. J. Biol. Chem. 280:5350-5360.
  20. Neel, B. G., H. Gu, and L. Pao. 2003. The ЈShp'ing news: SH2 domain- containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28:284-293.
  21. Qiao, M., P. Shapiro, R. Kumar, and A. Passaniti. 2004. Insulin-like growth factor-1 regulates endogenous RUNX2 activity in endothelial cells through a phosphatidylinositol 3-kinase/ERK-dependent and Akt-independent sig- naling pathway. J. Biol. Chem. 279:42709-42718.
  22. Rodrigues, G. A., M. Falasca, Z. Zhang, S. H. Ong, and J. Schlessinger. 2000. A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor sig- naling. Mol. Cell. Biol. 20:1448-1459.
  23. Rubin, B. P., and A. Duensing. 2006. Mechanisms of resistance to small molecule kinase inhibition in the treatment of solid tumors. Lab. Investig. 86:981-986.
  24. Rubio, I., and R. Wetzker. 2000. A permissive function of PI3K in Ras VOL. 28, 2008 COMBINED REGULATION BY PI3K OF Gab1/Shp2 AND Ras/ERK 599 on December 21, 2015 by guest http://mcb.asm.org/ Downloaded from activation mediated by inhibition of GTPase-activating proteins. Curr. Biol. 10:1225-1228.
  25. Schaeper, U., N. H. Gehring, K. P. Fuchs, M. Sachs, B. Kempkes, and W. Birchmeier. 2000. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J. Cell Biol. 149:1419-1432.
  26. Schlessinger, J. 2000. Cell signaling by receptor tyrosine kinases. Cell 103: 211-225.
  27. Schmidt, E. K., S. Fichelson, and S. M. Feller. 2004. PI3 kinase is important for Ras, MEK and Erk activation of Epo-stimulated human erythroid pro- genitors. BMC Biol. 2:7.
  28. Scho ¨nwasser, D. C., R. M. Marais, C. J. Marshall, and P. J. Parker. 1998. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C iso- types. Mol. Cell. Biol. 18:790-798.
  29. Sergina, N. V., M. Rausch, D. Wang, J. Blair, B. Hann, K. M. Shokat, and M. M. Moasser. 2007. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445:437-441.
  30. Shi, Z. Q., D. H. Yu, M. Park, M. Marshall, and G. S. Feng. 2000. Molecular mechanisms for the Shp-2 tyrosine function in promoting growth factor stimulation of Erk activity. Mol. Cell. Biol. 20:1526-1536.
  31. Sondermann, H., S. M. Soisson, S. Boykevisch, S. S. Yang, D. Bar-Sagi, and J. Kuriyan. 2004. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 119:393-405.
  32. Stea, B., R. Falsey, K. Kislin, J. Patel, H. Glanzberg, S. Carey, A. A. Ambrad, E. J. Meuillet, and J. D. Martinez. 2003. Time and dose-dependent radio- sensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (ЈIressa'). Cancer Lett. 202:43-51.
  33. Toker, A., and M. Yoeli-Lerner. 2006. Akt signaling and cancer: surviving but not moving on. Cancer Res. 66:3963-3966.
  34. Wandzioch, E., C. E. Edling, R. H. Palmer, L. Carlsson, and B. Hallberg. 2004. Activation of the MAP kinase pathway by c-Kit is PI-3 kinase depen- dent in hematopoietic progenitor/stem cell lines. Blood 104:51-57.
  35. Wennstro ¨m, S., and J. Downward. 1999. Role of phosphoinositide 3-kinase in activation of Ras and mitogen-activated protein kinase by epidermal growth factor. Mol. Cell. Biol. 19:4279-4288.
  36. Yart, A., M. Laffargue, P. Mayeux, S. Chretien, C. Peres, N. K. Tonks, S. Roche, B. Payrastre, H. Chap, and P. Raynal. 2001. A critical role for phosphoinositide 3-kinase upstream of Gab1 and SHP2 in the activation of Ras and mitogen-activated protein kinases by epidermal growth factor. J. Biol. Chem. 276:8856-8864.
  37. Yart, A., S. Roche, R. Wetzker, M. Laffargue, N. K. Tonks, P. Mayeux, H. Chap, and P. Raynal. 2002. A function for phosphoinositide 3-kinase beta lipid products in coupling beta gamma to Ras activation in response to lysophosphatidic acid. J. Biol. Chem. 277:21167-21178.
  38. Zhang, S. Q., W. Yang, M. I. Kontaridis, T. G. Bivona, G. Wen, T. Araki, J. Luo, J. A. Thompson, B. L. Schraven, M. R. Philips, and B. G. Neel. 2004. Shp2 regulates SRC family kinase activity and Ras/Erk activation by con- trolling Csk recruitment. Mol. Cell 13:341-355.