Quotients of maximal class of thin Lie algebras in characteristic two: errata and addendum (original) (raw)

Abstract

sparkles

AI

This paper investigates the structure of thin Lie algebras in characteristic two, focusing on the classification of maximal class algebras. It addresses the existence of infinite-dimensional algebras with non-metabelian factors and establishes key properties of their two-step centralizers. Results are supported by computational techniques using the ANU p-Quotient Program and GAP.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (19)

  1. R. Brand], A. Caranti. and C. M. Scoppola, Metabelian thin p-groups, Quart. J . Math. Oxford Ser. (2) 4 3 (1992), no. 170, 157-173.
  2. Bra881 Rolf Rrandl, The Dzlworth nuinber of subgroup lattzces, Arch. Math. (Rasel) 50 (1988), no. 6, 502-510.
  3. BS97j C. Bonmassar and C. M. Scoppola, Normally constrazned p-groups, to appear, 1997.
  4. Car971 A. Caranti, Presenting the graded Nottznghain Lze algebra, J . Algebra 198 (1997), 266-289.
  5. A. Caranti, Thin groups of przme-pou:er order nnd fhzn Lte olgehrast an adden- dum, to appear, Quart. J. Llat11. Oxford (2), 1909.
  6. A. Caranti and S. Mattarei. Some thtn Lie nlgebrns rclnted to .Albert-Frank alyc- brns and algebras of ~i ~n ~~n i a l c1n.s~. submitted. 1998.
  7. A. Carailti. S. Mattarei, and hl. F. Newman, Graded Lze algebrus of ~n u n m u l closs. Trans. Amer. ;\lath. Soc. 349 (1997), no. 10. 4021-4051.
  8. '3ISS!JCij A. C;wanti. S. 1Int~ai-el. 11. 1 ; St.ir.ni.in, ;uid C. 11. Scop~joI;~. Thir~ yroiil~r 4 prme-pou,rr or.dir o r i d i11li1 Lct ~ulgfhrus. Qii'xl. J . lIlttli. Oxloid Ser. (2) 47 (1996), no. 1 8 i , 279-296.
  9. A. Caranti and 51. F. Ketvman. Graded Lze olgebras of niazznml class. 11, in preparation, 1999.
  10. A. Fialowski, Classzficatzon of graded Lie nlgebras w t h two generators, Moscow Univ. Math. Bull. 38 (1983), no. 2, 76-79,
  11. G. Havas, M.F. Newman, and E.A. O'Brien, AA'U p-Quotzent Program (version 1.4), written in C, available as a share library with GAP and as part of Magma, or from http://uuwmaths.anu.edu.au/services/ftp.html,1997.
  12. G. Jurman, Quotzents of nlaximal class of thin Lie algebras. The case of charac- teristic two, C0mm.m Algebra 27 (1999), no. 12, 5749-5789.
  13. C. R. Leedham-Green, The structure of finzte p-groups, J . London Math. Soc. (2) 50 (1994), no. 1, 49-67.
  14. C. R. Leedhan-Green and M. F. Newman, Space groups and groups of prirne- power order. I., Arch. Math. (Basel) 35 (1980), no. 3, 193-202.
  15. C. R. Leedham-Green, W. Plesken, and G. Klaas, Pro-p-groups of finzte wzdth, Lecture Notes in Mathematics, vol. 1674, Springer-Verlag, Berlin, 1997.
  16. J. Lepowsky and S. Milne. Lze algebraic approaches to classical partitzon identi- ties., Adv. in Math. 29 (1978), no. 1, 15-59.
  17. E. Lucas, Sur les congruences des nombres eule'riens et des coefficients dif- fe'rentiels des fonctzons triy-onome'triques, suiuant u n module premier, Bull. Soc. Math. France 6 (1878), 49-74.
  18. M. Schijnert et al., GAP -Groups, Algorithms and Programming, Release 9.4, available from ht tp://www-history .mcs. s t-and. ac. uk/-gap/, School of Mathematical and Computational Sciences, University of St Andrews, Scotland, 1997. [Shag41 Aner Shalev, The structure of finite p-groups: effective proof of the coclass con- jectures, Invent. Math. 115 (1994), no. 2, 315-345.
  19. Aner Shalev and Efim I. Zelmanov, Narrow Lie algebras I: a coclass theory and a characterization of the Wztt algebra, J . Algebra 189 (1997), no. 2, 294-331.