Elasto-plastic analysis and finite element simulation of thick-walled functionally graded cylinder subjected to combined pressure and thermal loading (original) (raw)

A non-dimensional study on both analytic and numeric thermo-elastic behavior of functionally graded thick-walled cylinders under a combination of thermo-mechanical loads

2016

Using non-dimensional parameters, the governing equations of the homogeneous and heterogeneous cylinders made of functionally graded material (FGM) were derived under a combination of thermo-mechanical loads. The equations were solved analytically and numerically in a severe temperature and pressure gradient environment. The radial and circumferential stresses together with the radial displacement of FGM cylinder were analytically evaluated and the obtained results of heterogeneous FGM cylinder were compared with conventional homogeneous one. Moreover, in order to assess the accuracy of the derived equations, a numerical solution (NS) was performed using finite element method which was in accordance with the analytical solution (AS). The results of present work show that the use of FGM can optimize the cylinders which are exposed to the joint mechanical and thermal loads.

Mechanical And Thermal Stresses In Functionally Graded Cylinders

2014

In this study, thermal elastic stress distribution occurred on long hollow cylinders made of functionally graded material (FGM) was analytically defined under thermal, mechanical and thermo mechanical loads. In closed form solutions for elastic stresses and displacements are obtained analytically by using the infinitesimal deformation theory of elasticity. It was assumed that elasticity modulus, thermal expansion coefficient and density of cylinder materials could change in terms of an exponential function as for that Poisson's ratio was constant. A gradient parameter n is chosen between - 1 and 1. When n equals to zero, the disc becomes isotropic. Circumferential, radial and longitudinal stresses in the FGMs cylinders are depicted in the figures. As a result, the gradient parameters have great effects on the stress systems of FGMs cylinders.

Numerical and Analytical Investigation of a Cylinder Made of Functional Graded Materials under Thermo-Mechanical Fields

2016

This research develops thermo-elastic analysis of a functionally graded cylinder under thermo-mechanical loadings. Heat conduction equation in cylindrical coordinate system is solved. Thermal conductivity coefficient is graded along the radial direction. By considering a symmetric distribution of temperature, loading and boundary conditions, strain-displacement and stress-strain relations can be developed. Material properties such as modulus of elasticity are graded along the radial direction. For validation of the obtained results; a complete numerical analysis using finite element approach is presented.

Numerical Simulation of Stresses in Functionally Graded HCS-MgO Cylinder Using Iterative Technique and Finite Element Method

Materials

In this study, a thick hollow axisymmetric functionally graded (FG) cylinder is investigated for steady-state elastic stresses using an iteration technique and the finite element method. Here, we have considered a functionally graded cylinder tailored with the material property, namely, Young’s modulus, varying in an exponential form from the inner to outer radius of the cylinder. A mathematical formulation for stress analysis of functionally graded cylinder under internal and external pressure conditions is developed using constitutive relations for stress–strain, strain–displacement relations and the equation of equilibrium. The effect of the in-homogeneity parameter on radial displacement, radial and tangential stresses in a functionally graded cylinder made up of a High Carbon Steel (HCS) metal matrix, reinforced with Magnesium Oxide (MgO) ceramic is analyzed. The iterative method implemented is fast and converges to the solution which can be further improved by considering a hi...