Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus (original) (raw)

The effect of sound duration on rate–amplitude functions of inferior collicular neurons in the big brown bat, Eptesicus fuscus

Hearing Research, 2002

During echolocation, the amplitude and duration of echo pulses of the big brown bat, Eptesicus fuscus, covary throughout the entire course of hunting. The purpose of this study was to examine if variation in sound duration might affect the amplitude selectivity of inferior collicular (IC) neurons of this bat species under free-field stimulation conditions. A family of rate^amplitude functions of each IC neuron was obtained with different sound durations. The effect of sound duration on the neuron's amplitude selectivity was then studied by examining the type, best amplitude, dynamic range and slope of each rate^amplitude function. The rate^amplitude functions of 83 IC neurons determined with different sound durations were either monotonic, saturated or nonmonotonic. Neurons with monotonic rate^amplitude functions had the highest best amplitude, largest dynamic range but smallest slope. Neurons with non-monotonic rate^amplitude functions had the lowest best amplitude, smallest dynamic range but largest slope. The best amplitude, dynamic range and slope of neurons with saturated rate^amplitude functions were intermediate between these two types. Rate^amplitude functions of one group (47, 57%) of IC neurons changed from one type to another with sound duration and one-third of these neurons were tuned to sound duration. As a result, the best amplitude, dynamic range, and slope also varied with sound duration. However, rate^amplitude functions of the other group (36, 43%) of IC neurons were hardly affected by sound duration and two-thirds of these neurons were tuned to sound duration. Biological relevance of these findings in relation to bat echolocation is discussed. ß

Echo frequency selectivity of duration-tuned inferior collicular neurons of the big brown bat, Eptesicus fuscus, determined with pulse-echo pairs

Neuroscience, 2008

During hunting, insectivorous bats such as Eptesicus fuscus progressively vary the repetition rate, duration, frequency and amplitude of emitted pulses such that analysis of an echo parameter by bats would be inevitably affected by other co-varying echo parameters. The present study is to determine the variation of echo frequency selectivity of duration-tuned inferior collicular neurons during different phases of hunting using pulse-echo (P-E) pairs as stimuli. All collicular neurons discharge maximally to a tone at a particular frequency which is defined as the best frequency (BF).

The effect of sound intensity on duration-tuning characteristics of bat inferior collicular neurons

2001

Previous studies have shown that inferior collicular neurons of the big brown bat, Eptesicus fuscus, serve as short-, band-, long-and all-pass ®lters for sound durations. Neurons with band-, short-and long-pass ®ltering characteristics discharged maximally to a spe-ci®c sound duration or a range of sound durations. In contrast, neurons with all-pass ®ltering characteristics do not have duration selectivity. To determine if duration-tuning characteristics of collicular neurons were tolerant to changes in sound intensity, we examined the duration-tuning characteristics of collicular neurons using a wide range of sound intensities. Duration-tuning characteristics examined included the type, bandwidth and slope of duration-tuning curves. Sound intensity delivered within 20 dB of minimum threshold did not aect duration-tuning characteristics of all collicular neurons studied. Sound intensities at still higher levels did not aect the tuning characteristics of two-thirds of collicular neurons but decreased the duration selectivity and changed the duration-tuning curves of the remaining one-third of neurons from one type to another. However, these two groups of duration-tuning collicular neurons were not separately organized inside the inferior colliculus. The biological relevance of these ®ndings to bat echolocation is discussed.

Frequency tuning, latencies, and responses to frequency-modulated sweeps in the inferior colliculus of the echolocating bat, Eptesicus fuscus

Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology, 1997

Neurons in the inferior colliculus (IC) of the awake big brown bat, Eptesicus fuscus, were examined for joint frequency and latency response properties which could register the timing of the bat's frequency-modulated (FM) biosonar echoes. Best frequencies (BFs) range from 10 kHz to 100 kHz with 50% tuning widths mostly from 1 kHz to 8 kHz. Neurons respond with one discharge per 2-ms tone burst or FM stimulus at a characteristic latency in the range of 3–45 ms, with latency variability (SD) of 50 μs to 4–6 ms or more. BF distribution is related to biosonar signal structure. As observed previously, on a linear frequency scale BFs appear biased to lower frequencies, with 20–40 kHz overrepresented. However, on a hyperbolic frequency (linear period) scale BFs appear more uniformly distributed, with little overrepresentation. The cumulative proportion of BFs in FM1 and FM2 bands reconstructs a scaled version of the spectrogram of FM broadcasts. Correcting FM latencies for absolute BF latencies and BF time-in-sweep reveals a subset of IC cells which respond dynamically to the timing of their BFs in FM sweeps. Behaviorally, Eptesicus perceives echo delay and phase with microsecond or even submicrosecond accuracy and resolution, but even with use of phase-locked FM and tone-burst stimuli the cell-by-cell precision of IC time-frequency registration seems inadequate by itself to account for the temporal acuity exhibited by the bat.

Bat inferior collicular neurons have the greatest frequency selectivity when determined with best-duration pulses

Neuroscience Letters, 2008

During hunting, insectivorous bats such as Eptesicus fuscus progressively increase the pulse repetition rate, shorten the pulse duration, and lower the frequency and amplitude of emitted pulses as they search, approach and finally intercept insects or negotiate obstacles. As such, analysis of an echo parameter by the bat is inevitably affected by other co-varying echo parameters. The present study examined the effect of pulse duration on frequency selectivity of neurons in the central nucleus of the inferior colliculus (IC) of the big brown bat. A family of iso-level frequency tuning curves of each IC neuron was first measured with tone bursts of different durations. The bandwidth of iso-level frequency tuning curves within each family was then compared. Our data show that most IC neurons discharge maximally to a particular pulse duration which is defined as the best duration (BDu). The iso-level frequency tuning curves of these duration-selective neurons have the narrowest bandwidth when measured with the BDu pulse than with non-BDu pulses. They also have the narrowest bandwidth when measured with a short than with a long BDu pulse. These data suggest that frequency selectivity of duration-selective IC neurons becomes sharper when short echo duration at the final phase of hunting is encoded by IC neurons that have short BDu.

Dynamic temporal signal processing in the inferior colliculus of echolocating bats

Frontiers in neural circuits, 2012

In nature, communication sounds among animal species including humans are typical complex sounds that occur in sequence and vary with time in several parameters including amplitude, frequency, duration as well as separation, and order of individual sounds. Among these multiple parameters, sound duration is a simple but important one that contributes to the distinct spectral and temporal attributes of individual biological sounds. Likewise, the separation of individual sounds is an important temporal attribute that determines an animal's ability in distinguishing individual sounds. Whereas duration selectivity of auditory neurons underlies an animal's ability in recognition of sound duration, the recovery cycle of auditory neurons determines a neuron's ability in responding to closely spaced sound pulses and therefore, it underlies the animal's ability in analyzing the order of individual sounds. Since the multiple parameters of naturally occurring communication sound...

Timing in the Auditory System of the Bat

Annual Review of Physiology, 1999

Echolocating bats use audition to guide much of their behavior. As in all vertebrates, their lower brainstem contains a number of parallel auditory pathways that provide excitatory or inhibitory outputs differing in their temporal discharge patterns and latencies. These pathways converge in the auditory midbrain, where many neurons are tuned to biologically important parameters of sound, including signal duration, frequency-modulated sweep direction, and the rate of periodic frequency or amplitude modulations. This tuning to biologically relevant temporal patterns of sound is created through the interplay of the time-delayed excitatory and inhibitory inputs to midbrain neurons. Because the tuning process requires integration over a relatively long time period, the rate at which midbrain auditory neurons respond corresponds to the cadence of sounds rather than their fine structure and may provide an output that is closely matched to the rate at which motor systems operate.

Time and frequency domain processing in the inferior colliculus of echolocating bats

Hearing Research, 1981

Tone bursts and frequency-modulated (FM) signals were presented to Mexican free-tailed bats and tuning curves, discharge patterns, and discharge latencies of single units in the inferior colliculus were recorded. Cells were broadly tuned to tone bursts, with most Q 10 values ranging from 3 to 20. However, in response to FM stimulation the discharges of neurons were closely synchronized to the time of occurrence of restricted frequency components within the FM sweep. These excitatory frequencies (EFs) were generally unaffected by changes in the starting frequency or intensity of the stimulus. Thus, in response to FM signals, the cells exhibited a much greater frequency selectivity than that observed following tone burst stimulation. Across the population of neurons sampled, EFs covering a wide frequency range were found, and the different EFs were represented in a systematic fashion within the colliculus. The frequencies in an FM biosonar signal or echo will thus be neurally represented both by the time of occurrence of neuronal discharges and by the location of the discharging cells within the nucleus. The potential role of this dual frequency coding in spectral and temporal processing of biosonar signals and echoes is discussed, with emphasis on the neural coding of target range.

Temporally patterned sound pulse trains affect intensity and frequency sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus

Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 2001

This study examined the eect of temporally patterned pulse trains on intensity and frequency sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus. Intensity sensitivity of inferior collicular neurons was expressed by the dynamic range and slope of rate-intensity functions. Inferior collicular neurons with non-monotonic rate-intensity functions have smaller dynamic ranges and larger slopes than neurons with monotonic or saturated rate-intensity functions. Intensity sensitivity of all inferior collicular neurons improved by increasing the number of nonmonotonic rate-intensity functions when the pulse repetition rate of pulse trains increased from 10 to 30 pulses per second. Intensity sensitivity of 43% inferior collicular neurons further improved when the pulse repetition rate of pulse trains increased still from 30 to 90 pulses per second. Frequency sensitivity of inferior collicular neurons was expressed by the Q 10 , Q 20 , and Q 30 values of threshold frequency tuning curves and bandwidths of isointensity frequency tuning curves. Threshold frequency tuning curves of all inferior collicular neurons were V-shape and mirror-images of their counterpart isointensity frequency tuning curves. The Q 10 , Q 20 , and Q 30 values of threshold frequency tuning curves of all inferior collicular neurons progressively increased and bandwidths of isointensity frequency tuning curves decreased with increasing pulse repetition rate in temporally patterned pulse trains. Biological relevance of these ®ndings to bat echolocation is discussed.