Role of Fat Body Lipogenesis in Protection against the Effects of Caloric Overload in Drosophila (original) (raw)
Related papers
Metabolic and transcriptional response to a high-fat diet in Drosophila melanogaster
Molecular metabolism, 2014
Obesity has dramatically increased in prevalence, making it essential to understand its accompanying metabolic changes. Modeling diet-induced obesity in Drosophila melanogaster (fruit flies), we elucidated transcriptional and metabolic changes in w (1118) flies on a high-fat diet (HFD). Mass spectrometry-based metabolomics revealed altered fatty acid, amino acid, and carbohydrate metabolism with HFD. Microarray analysis uncovered transcriptional changes in nitrogen metabolism, including CG9510, homolog of human argininosuccinate lyase (ASL). CG9510 knockdown in flies phenocopied traits observed with HFD, namely increased triglyceride levels and decreased cold tolerance. Restoration of CG9510 expression ameliorated observed negative consequences of HFD. Metabolomic analysis of CG9510 knockdown flies confirmed functional similarity to ASL, regulating the balance of carbon and nitrogen metabolism. In summary, we found that HFD suppresses CG9510 expression, a gene required for proper tr...
Journal of Tissue Science & Engineering, 2015
The fat body of Drosophila has been considered as the equivalent to the vertebrate adipose tissue and liver in its storage and major metabolic functions. It is a dynamic and multifunctional tissue which functions in energy storage, immune response and as a nutritional sensor. As a major endocrine organ in Drosophila, the fat body can produce various proteins, lipids and carbohydrates, synthesize triglyceride, diacylglycerol, trehalose and glycogen in response to energetic demands. It also secretes significant proteins governing oocyte maturation or targeting nutritional signals in the regulation of the metabolism. At different developmental stages and under different environmental conditions the fat body can interplay with other tissues in monitoring and responding to the physiological needs of the body's growth and to coordinate the metabolism of development. The Drosophila fat body exists as a model relating to human lipometabolic disease, puberty and maturation and age-related diseases such as cancer, obesity and diabetes. In this review, we summarize the fat body formation and maturation in the Drosophila life cycle and provide an overview of fat body function as an energy reservoir and nutrient sensor. We also discuss the signaling pathways and key regulatory factors involved.
Fat body remodeling and homeostasis control in Drosophila
Life Sciences, 2016
Remarkable advances have been made in recent years in our understanding of the Drosophila fat body and its functions in energy storage, immune response and nutrient sensing. The fat body interplays with other tissues to respond to the physiological needs of the body's growth and coordinates various metabolic processes at different developmental stages and under different environmental conditions. The identification of various conserved genetic functions and signaling pathways relating to the Drosophila fat body may provide clues to lipometabolic disease and other aspects of tissue remodeling in humans. Here, we discuss recent insights into how regulation of fat body remodeling contributes to hemostasis with a special focus on how signaling networks and internal physiological states shape different aspects of the lipid metabolism in Drosophila.
Dietary Restriction Induces a Stable Metabolic Obesity Phenotype in Drosophila Melanogaster
2021
Objective Challenges associated with current nutritional models to induce obesity in Drosophila melanogaster created a rationale for this study. The objective of the study was to investigate biochemical changes associated with high-fat diet (HFD), high sucrose diet (HSD), and a protein-restricted diet (DR) to induce a healthy metabolic obesity state. Drosophila melanogaster were fed to four experimental diets: regular food (control), HFD, HSD, and DR, for four weeks. Peristaltic waves were measured on 3 rd instar larvae, while negative geotaxis, body mass, catalase activity; and total triglycerides, sterol, and protein were measured in adult Drosophila melanogaster. Results DR produced a Drosophila melanogaster phenotype which had superior adaptive advantages than that generated from HFD and HSD. HFD was the best phenotype during larval stages; however, locomotory, body mass, triglyceride, sterol concentrations, and catalase activity were highest in the DR phenotype during adulthood. High catalase activity and high triglyceride content demonstrated a balanced and healthy metabolic obesity status than in other phenotypes in the adult stage. Evolutionary changes are responsible for the selective advantage of the DR phenotype over the HFD phenotype. Prospective studies to guide therapy and community behavior should place more emphasis on the DR phenotypes in Drosophila melanogaster.
A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila
2011
Insulin-resistant, 'type 2' diabetes (T2D) results from a complex interplay between genes and environment. In particular, both caloric excess and obesity are strongly associated with T2D across many genetic backgrounds. To gain insights into how dietary excess affects insulin resistance, we studied the simple model organism Drosophila melanogaster. Larvae reared on a high-sugar diet were hyperglycemic, insulin resistant and accumulated fat -hallmarks of T2D -compared with those reared on control diets. Excess dietary sugars, but not fats or proteins, elicited insulin-resistant phenotypes. Expression of genes involved in lipogenesis, gluconeogenesis and -oxidation was upregulated in high-sugar-fed larvae, as were FOXO targets, consistent with known mechanisms of insulin resistance in humans. These data establish a novel Drosophila model of diet-induced insulin resistance that bears strong similarity to the pathophysiology of T2D in humans.
Role of High-Fat Diet in Stress Response of Drosophila
PLoS ONE, 2012
Obesity is associated with many diseases, one of the most common being obstructive sleep apnea (OSA), which in turn leads to blood gas disturbances, including intermittent hypoxia (IH). Obesity, OSA and IH are associated with metabolic changes, and while much mammalian work has been done, mechanisms underlying the response to IH, the role of obesity and the interaction of obesity and hypoxia remain unknown. As a model organism, Drosophila offers tremendous power to study a specific phenotype and, at a subsequent stage, to uncover and study fundamental mechanisms, given the conservation of molecular pathways. Herein, we characterize the phenotype of Drosophila on a high-fat diet in normoxia, IH and constant hypoxia (CH) using triglyceride and glucose levels, response to stress and lifespan. We found that female flies on a high-fat diet show increased triglyceride levels (p,0.001) and a shortened lifespan in normoxia, IH and CH. Furthermore, flies on a high-fat diet in normoxia and CH show diminished tolerance to stress, with decreased survival after exposure to extreme cold or anoxia (p,0.001). Of interest, IH seems to rescue this decreased cold tolerance, as flies on a high-fat diet almost completely recovered from cold stress following IH. We conclude that the cross talk between hypoxia and a high-fat diet can be either deleterious or compensatory, depending on the nature of the hypoxic treatment.
Disease Models & Mechanisms, 2014
Over the past decade, numerous reports have underscored the similarities between the metabolism of Drosophila and vertebrates, with the identification of evolutionarily conserved enzymes and analogous organs that regulate carbohydrate and lipid metabolism. It is now well established that the major metabolic, energy-sensing and endocrine signaling networks of vertebrate systems are also conserved in flies. Accordingly, studies in Drosophila are beginning to unravel how perturbed energy balance impinges on lifespan and on the ensuing diseases when energy homeostasis goes awry. Here, we highlight several emerging concepts that are at the nexus between obesity, nutrient sensing, metabolic homeostasis and aging. Specifically, we summarize the endocrine mechanisms that regulate carbohydrate and lipid metabolism, and provide an overview of the neuropeptides that regulate feeding behavior. We further describe the various efforts at modeling the effects of high-fat or -sugar diets in Drosoph...
Dual Lipolytic Control of Body Fat Storage and Mobilization in Drosophila
PLOS Biology, 2007
Energy homeostasis is a fundamental property of animal life, providing a genetically fixed balance between fat storage and mobilization. The importance of body fat regulation is emphasized by dysfunctions resulting in obesity and lipodystrophy in humans. Packaging of storage fat in intracellular lipid droplets, and the various molecules and mechanisms guiding storage-fat mobilization, are conserved between mammals and insects. We
High-Fat-Diet-Induced Obesity and Heart Dysfunction Are Regulated by the TOR Pathway in Drosophila
Cell Metabolism, 2010
High-fat-diet (HFD)-induced obesity is a major contributor to diabetes and cardiovascular disease, but the underlying genetic mechanisms are poorly understood. Here, we use Drosophila to test the hypothesis that HFD-induced obesity and associated cardiac complications have early evolutionary origins involving nutrient-sensing signal transduction pathways. We find that HFD-fed flies exhibit increased triglyceride (TG) fat and alterations in insulin/glucose homeostasis, similar to mammalian responses. A HFD also causes cardiac lipid accumulation, reduced cardiac contractility, conduction blocks, and severe structural pathologies, reminiscent of diabetic cardiomyopathies. Remarkably, these metabolic and cardiotoxic phenotypes elicited by HFD are blocked by inhibiting insulin-TOR signaling. Moreover, reducing insulin-TOR activity (by expressing TSC1-2, 4EBP or FOXO), or increasing lipase expression-only within the myocardium-suffices to efficiently alleviate cardiac fat accumulation and dysfunction induced by HFD. We conclude that deregulation of insulin-TOR signaling due to a HFD is responsible for mediating the detrimental effects on metabolism and heart function.
Lipin Is a Central Regulator of Adipose Tissue Development and Function in Drosophila melanogaster
Molecular and Cellular Biology, 2011
Lipins are evolutionarily conserved proteins found from yeasts to humans. Mammalian and yeast lipin proteins have been shown to control gene expression and to enzymatically convert phosphatidate to diacylglycerol, an essential precursor in triacylglcerol (TAG) and phospholipid synthesis. Loss of lipin 1 in the mouse, but not in humans, leads to lipodystrophy and fatty liver disease. Here we show that the single lipin orthologue of Drosophila melanogaster (dLipin) is essential for normal adipose tissue (fat body) development and TAG storage. dLipin mutants are characterized by reductions in larval fat body mass, whole-animal TAG content, and lipid droplet size. Individual cells of the underdeveloped fat body are characterized by increased size and ultrastructural defects affecting cell nuclei, mitochondria, and autophagosomes. Under starvation conditions, dLipin is transcriptionally upregulated and functions to promote survival. Together, these data show that dLipin is a central player in lipid and energy metabolism, and they establish Drosophila as a genetic model for further studies of conserved functions of the lipin family of metabolic regulators.