Study of the diurnal variability of atmospheric chemistry with respect to boundary layer dynamics during DOMINO (original) (raw)

Case study of the diurnal variability of chemically active species with respect to boundary layer dynamics during DOMINO

Atmospheric Chemistry and Physics, 2012

We study the interactions between atmospheric boundary layer (ABL) dynamics and atmospheric chemistry using a mixed-layer model coupled to chemical reaction schemes. Guided by both atmospheric and chemical measurements obtained during the DOMINO (Diel Oxidant Mechanisms in relation to Nitrogen Oxides) campaign (2008), numerical experiments are performed to study the role of ABL dynamics and the accuracy of chemical schemes with different complexity: the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) and a reduced mechanism of this chemical system. Both schemes produce satisfactory results, indicating that the reduced scheme is capable of reproducing the O 3 -NO x -VOC-HO x diurnal cycle during conditions characterized by a low NO x regime and small O 3 tendencies (less than 1 ppb per hour). By focusing on the budget equations of chemical species in the mixedlayer model, we show that for species like O 3 , NO and NO 2 , the influence of entrainment and boundary layer growth is of the same order as chemical production/loss. This indicates that an accurate representation of ABL processes is crucial in understanding the diel cycle of chemical species. By comparing the time scales of chemical reactive species with the mixing time scale of turbulence, we propose a classification based on the Damköhler number to further deter-mine the importance of dynamics on chemistry during field campaigns. Our findings advocate an integrated approach, simultaneously solving the ABL dynamics and chemical reactions, in order to obtain a better understanding of chemical pathways and processes and the interpretation of the results obtained during measurement campaigns.

Modeling the diurnal cycle of conserved and reactive species in the convective boundary layer

Geoscientific Model Development Discussions, 2015

We have developed a one-dimensional second-order closure numerical model to study the vertical turbulent transport of trace reactive species in the convective (daytime) planetary boundary layer (CBL), which we call the Second-Order Model for Conserved and Reactive Unsteady Scalars (SOMCRUS). The temporal variation of the CBL depth is calculated using a simple mixed-layer model with a constant entrainment coefficient and zero-order discontinuity at the CBL top. We then calculate time-varying continuous profiles of mean concentrations and vertical turbulent fluxes, variances, and covariances of both conserved and chemically-reactive scalars in a diurnally-varying CBL. The set of reactive species is the…

The dispersion of chemically reactive species in the atmospheric boundary layer

Meteorology and Atmospheric Physics, 2004

The role of turbulence in the dispersion of atmospheric pollutants that react with linear (decay) and nonlinear (second-order) chemical reactions is examined. The most relevant processes that drive the reactivity of species emitted in a surface area or released by a point source are studied by deriving the dimensionless scaling numbers from equations for the atmospheric turbulent reacting flow. The first number is the ratio of the time scale of turbulence to the time scale of the chemical reaction, namely the Damk€ o ohler number. The second number is the ratio of the concentrations of the species present in the chemical transformations. In this paper, model results and experimental studies of turbulent reacting flows in the atmospheric boundary layer are presented to show the modifications and control exerted by turbulence on the atmospheric chemistry as a function of these numbers and processes. We also discuss how the chemical transformation is affected when species are in a state of chemical equilibrium.

Surface and boundary layer exchanges of volatile organic compounds, nitrogen oxides and ozone during the GABRIEL campaign

Atmospheric Chemistry and Physics, 2008

We present an evaluation of sources, sinks and turbulent transport of nitrogen oxides, ozone and volatile organic compounds (VOC) in the boundary layer over French Guyana and Suriname during the October 2005 GABRIEL campaign by simulating observations with a single-column chemistry and climate model (SCM) along a zonal transect. Simulated concentrations of O 3 and NO as well as NO 2 photolysis rates over the forest agree well with observations when a small soil-biogenic NO emission flux was applied. This suggests that the photochemical conditions observed during GABRIEL reflect a pristine tropical low-NO x regime. The SCM uses a compensation point approach to simulate nocturnal deposition and daytime emissions of acetone and methanol and produces daytime boundary layer mixing ratios in reasonable agreement with observations. The area average isoprene emission flux, inferred from the observed isoprene mixing ratios and boundary layer height, is about half the flux simulated with commonly applied emission algorithms. The SCM nevertheless simulates too high isoprene mixing ratios, whereas hydroxyl concentrations are strongly underestimated compared to observations, which can at least partly explain the discrepancy. Furthermore, the model substantially overestimates the isoprene oxidation products methlyl vinyl ketone (MVK) and methacrolein (MACR) partly

Model evaluation of the atmospheric boundary layer and mixed-layer evolution

Boundary-Layer Meteorology, 2007

The sensitivity of regional air quality modeling simulations to boundary conditions over Greece is investigated, for various synoptic conditions. For this purpose, a global to mesoscale model-chain is developed and applied, coupling the individual models' simulations. The global chemical transport model GEOS-CHEM, applied in a one-way nested procedure, is used to drive the regional UAM-V chemical dispersion model with time-varying lateral and top boundary conditions. The results of the coupling procedure are compared with the MINOS campaign measurements at Finokalia (Southern Greece) during the period from 1 to 16 August 2001 which is mainly characterized by an interchange of two synoptic types, High-Low and Long Wave trough. The comparison between the simulation results and the measurements reveals that the coupling procedure captures satisfactorily the range of observed CO concentrations at the southern part of Greece. The most severe deviations are observed under strongly variable atmospheric circulation, when no distinct synoptic circulation is allowed to be established in the area. Regarding O 3 , the highest, though underestimated, surface concentrations are simulated under Long Wave trough conditions due to the influence of the ozone inflow predicted by GEOS-CHEM at the western boundary of the innermost domain and/or under enhanced NOy emissions arriving at Finokalia from urban and ships plumes.

Scenarios for modeling multiphase tropospheric chemistry

Journal of Atmospheric Chemistry, 2001

Besides observational data model calculations are a very important tool for improving our understanding of multiphase chemistry in the troposphere. Before a chemical model can be used for that purpose it is necessary to show that the model does what it is intended to do. A protocol has been developed that can be used as a basis for the verification of the numerics and the correct implementation of the chemical balance equations. The protocol defines meteorological parameters and initial conditions for a zerodimensional (box) model. Several scenarios cover the polluted as well as the remote marine and continental boundary layer and also the free troposphere. Calculations by different groups with different models and numerical solvers demonstrate that the protocol is clear and complete. The excellent agreement between the results of all groups are a major step of verification of the participating models. The scenarios may also serve as well documented base cases for sensitivity studies.

2 3 Boundary-Layer Meteorology An International Journal of Physical, Chemical and Biological Processes in the Atmospheric Boundary Layer Evolving Turbulence Realizations of Atmospheric Flow

Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010

Atmospheric Chemistry and Physics, 2012

We studied the atmospheric boundary layer (ABL) dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics during the campaign. We propose a classification according to several main ABL prototypes. Further, we performed a case study of a single day, focusing on the convective boundary layer, to analyse the influence of the dynamics on the chemical evolution of the ABL. We used a mixed layer model, initialized and constrained by observations. In particular, we investigated the role of large scale atmospheric dynamics (subsidence and advection) on the ABL development and the evolution of chemical species concentrations. We find that, if the large scale forcings are taken into account, the ABL dynamics are represented satisfactorily. Subsequently, we studied the impact of mixing with a residual layer aloft during the morning transition on atmospheric chemistry. The time evolution of NO x and O 3 concentrations, including morning peaks, can be explained and accurately simulated by incorporating the transition of the ABL dynamics from night to day. We demonstrate the importance of the ABL height evolution for the representation of atmospheric chemistry. Our findings underscore the need to couple the dynamics and chemistry at different spatial scales (from turbulence to mesoscale) in chemistry-transport models and in the interpretation of observational data.

Systematic reduction of complex tropospheric chemical mechanisms, Part I: sensitivity and time-scale analyses

… Chemistry and Physics, 2004

Explicit mechanisms describing the complex degradation pathways of atmospheric volatile organic compounds (VOCs) are important, since they allow the study of the contribution of individual VOCS to secondary pollutant formation. They are computationally expensive to solve however, since they contain large numbers of species and a wide range of timescales causing stiffness in the resulting equation systems. This paper and the following companion paper describe the application of systematic and automated methods for reducing such complex mechanisms, whilst maintaining the accuracy of the model with respect to important species and features. The methods are demonstrated via application to version 2 of the Leeds Master Chemical Mechanism.