Comparative genomic analysis of malaria mosquito vector-associated novel pathogen Elizabethkingia anophelis (original) (raw)
Related papers
Scientific reports, 2017
Elizabethkingia anophelis has become an emerging infection in humans. Recent research has shown that previous reports of E. meningoseptica infections might in fact be caused by E. anophelis. We aimed to investigate the genomic features, phylogenetic relationships, and comparative genomics of this emerging pathogen. Elizabethkingia anophelis strain EM361-97 was isolated from the blood of a cancer patient in Taiwan. The total length of the draft genome was 4,084,052 bp. The whole-genome analysis identified the presence of a number of antibiotic resistance genes, which corresponded with the antibiotic susceptibility phenotype of this strain. Based on the average nucleotide identity, the phylogenetic analysis revealed that E. anophelis EM361-97 was a sister group to E. anophelis FMS-007, which was isolated from a patient with T-cell non-Hodgkin's lymphoma in China. Knowledge of the genomic characteristics and comparative genomics of E. anophelis will provide researchers and clinicia...
Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi
Genome biology, 2014
Background Anopheles stephensi is the key vector of malaria throughout the Indian subcontinent and Middle East and an emerging model for molecular and genetic studies of mosquito-parasite interactions. The type form of the species is responsible for the majority of urban malaria transmission across its range.ResultsHere, we report the genome sequence and annotation of the Indian strain of the type form of An. stephensi. The 221 Mb genome assembly represents more than 92% of the entire genome and was produced using a combination of 454, Illumina, and PacBio sequencing. Physical mapping assigned 62% of the genome onto chromosomes, enabling chromosome-based analysis. Comparisons between An. stephensi and An. gambiae reveal that the rate of gene order reshuffling on the X chromosome was three times higher than that on the autosomes. An. stephensi has more heterochromatin in pericentric regions but less repetitive DNA in chromosome arms than An. gambiae. We also identify a number of Y-ch...
Evidence for Elizabethkingia anophelis Transmission from Mother to Infant, Hong Kong
Emerging infectious diseases, 2015
Elizabethkingia anophelis, recently discovered from mosquito gut, is an emerging bacterium associated with neonatal meningitis and nosocomial outbreaks. However, its transmission route remains unknown. We use rapid genome sequencing to investigate 3 cases of E. anophelis sepsis involving 2 neonates who had meningitis and 1 neonate's mother who had chorioamnionitis. Comparative genomics revealed evidence for perinatal vertical transmission from a mother to her neonate; the 2 isolates from these patients, HKU37 and HKU38, shared essentially identical genome sequences. In contrast, the strain from another neonate (HKU36) was genetically divergent, showing only 78.6% genome sequence identity to HKU37 and HKU38, thus excluding a clonal outbreak. Comparison to genomes from mosquito strains revealed potential metabolic adaptations in E. anophelis under different environments. Maternal infection, not mosquitoes, is most likely the source of neonatal E. anophelis infections. Our findings...
Standards in Genomic Sciences, 2017
Elizabethkingia meningoseptica is an emerging, healthcare-associated pathogen causing a high mortality rate in immunocompromised patients. We report the draft genome sequence of E. meningoseptica Em3, isolated from sputum from a patient with multiple underlying diseases. The genome has a length of 4,037,922 bp, a GC-content 36.4%, and 3673 predicted protein-coding sequences. Average nucleotide identity analysis (>95%) assigned the bacterium to the species E. meningoseptica. Genome analysis showed presence of the curli formation and assembly operon and a gene encoding hemagglutinins, indicating ability to form biofilm. In vitro biofilm assays demonstrated that E. meningoseptica Em3 formed more biofilm than E. anophelis Ag1 and E. miricola Emi3, both lacking the curli operon. A gene encoding thiol-activated cholesterol-dependent cytolysin in E. meningoseptica Em3 (potentially involved in lysing host immune cells) was also absent in E. anophelis Ag1 and E. miricola Emi3. Strain Em3 showed α-hemolysin activity on blood agar medium, congruent with presence of hemolysin and cytolysin genes. Furthermore, presence of heme uptake and utilization genes demonstrated adaptations for bloodstream infections. Strain Em3 contained 12 genes conferring resistance to β-lactams, including β-lactamases class A, class B, and metallo-β-lactamases. Results of comparative genomic analysis here provide insights into the evolution of E. meningoseptica Em3 as a pathogen.
The genome sequence of the malaria mosquito Anopheles gambiae
Science, 2002
Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. ...
The genome sequence of the malaria mosquito, Anopheles funestus, Giles, 1900
Wellcome Open Research
We present a genome assembly from an individual female Anopheles funestus (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae). The genome sequence is 251 megabases in span. The majority of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.4 kilobases in length.
Scientific Reports
Elizabethkingia anophelis has now emerged as an opportunistic human pathogen. However, its mechanisms of transmission remain unexplained. Comparative genomic (CG) analysis of E. anopheles endophthalmitis strain surprisingly found from an eye infection patient with twenty-five other E. anophelis genomes revealed its potential to participate in horizontal gene transfer. CG analysis revealed that the study isolate has an open pan genome and has undergone extensive gene rearrangements. We demonstrate that the strain is naturally competent, hitherto not reported in any members of Elizabethkingia. Presence of competence related genes, mobile genetic elements, Type IV, VI secretory systems and a unique virulence factor arylsulfatase suggests a different lineage of the strain. Deciphering the genome of E. anophelis having a reservoir of antibiotic resistance genes and virulence factors associated with diverse human infections may open up avenues to deal with the myriad of its human infections and devise strategies to combat the pathogen.
Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes
Neil Lobo, Andrea Crisanti, Pantelis Topalis, Peter Arensburger, Antonis Rokas, David Rinker, Scott Emrich, Marc Muskavitch, Ashok Rajaraman, Paul Howell, Igor V Sharakhov
Science (New York, N.Y.), 2015
Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.
The Genome of Anopheles darlingi, the main neotropical malaria vector (Marinotti et al 2013)
Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors $100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in