Uncovering pathways in DNA oligonucleotide hybridization via transition state analysis (original) (raw)

Determining Sequence-Dependent DNA Oligonucleotide Hybridization and Dehybridization Mechanisms Using Coarse-Grained Molecular Simulation, Markov State Models, and Infrared Spectroscopy

Journal of the American Chemical Society, 2021

A robust understanding of the sequence-dependent thermodynamics of DNA hybridization has enabled rapid advances in DNA nanotechnology. A fundamental understanding of the sequence-dependent kinetics and mechanisms of hybridization and dehybridization remains comparatively underdeveloped. In this work, we establish new understanding of the sequence-dependent hybridization/dehybridization kinetics and mechanism within a family of self-complementary pairs of 10-mer DNA oligomers by integrating coarse-grained molecular simulation, machine learning of the slow dynamical modes, data-driven inference of long-time kinetic models, and experimental temperature-jump infrared spectroscopy. For a repetitive ATATATATAT sequence, we resolve a rugged dynamical landscape comprising multiple metastable states, numerous competing hybridization/dehybridization pathways, and a spectrum of dynamical relaxations. Introduction of a G:C pair at the terminus (GATATATATC) or center (ATATGCATAT) of the sequence reduces the ruggedness of the dynamics landscape by eliminating a number of metastable states and reducing the number of competing dynamical pathways. Only by introducing a G:C pair midway between the terminus and the center to maximally disrupt the repetitive nature of the sequence (ATGATATCAT) do we recover a canonical "all-or-nothing" two-state model of hybridization/dehybridization with no intermediate metastable states. Our results establish new understanding of the dynamical richness of sequence-dependent kinetics and mechanisms of DNA hybridization/dehybridization by furnishing quantitative and predictive kinetic models of the dynamical transition network between metastable states, present a molecular basis with which to understand experimental temperature jump data, and furnish foundational design rules by which to rationally engineer the kinetics and pathways of DNA association and dissociation for DNA nanotechnology applications.

DNA hybridization kinetics: zippering, internal displacement and sequence dependence

Although the thermodynamics of DNA hybridization is generally well established, the kinetics of this classic transition is less well understood. Providing such understanding has new urgency because DNA nanotechnology often depends critically on binding rates. Here, we explore DNA oligomer hybridization kinetics using a coarse-grained model. Strand association proceeds through a complex set of intermediate states, with successful binding events initiated by a few metastable base-pairing interactions, followed by zippering of the remaining bonds. But despite reasonably strong interstrand interactions, initial contacts frequently dissociate because typical configurations in which they form differ from typical states of similar enthalpy in the double-stranded equilibrium ensemble. Initial contacts must be stabilized by two or three base pairs before full zippering is likely, resulting in negative effective activation enthalpies. Non-Arrhenius behavior arises because the number of base pairs required for nucleation increases with temperature. In addition, we observe two alternative pathways-pseudoknot and inchworm internal displacement-through which misaligned duplexes can rearrange to form duplexes. These pathways accelerate hybridization. Our results explain why experimentally observed association rates of GC-rich oligomers are higher than rates of AT-rich equivalents, and more generally demonstrate how association rates can be modulated by sequence choice.

The stability and number of nucleating interactions determine DNA hybridization rates in the absence of secondary structure

Nucleic Acids Research, 2022

The kinetics of DNA hybridization are fundamental to biological processes and DNA-based technologies. However, the precise physical mechanisms that determine why different DNA sequences hybridize at different rates are not well understood. Secondary structure is one predictable factor that influences hybridization rates but is not sufficient on its own to fully explain the observed sequence-dependent variance. In this context, we measured hybridization rates of 43 different DNA sequences that are not predicted to form secondary structure and present a parsimonious physically justified model to quantify our observations. Accounting only for the combinatorics of complementary nucleating interactions and their sequence-dependent stability, the model achieves good correlation with experiment with only two free parameters. Our results indicate that greater repetition of Watson-Crick pairs increases the number of initial states able to proceed to full hybridization, with the stability of those pairings dictating the likelihood of such progression, thus providing new insight into the physical factors underpinning DNA hybridization rates.

Topological constraints in nucleic acid hybridization kinetics

Nucleic Acids Research, 2005

A theoretical examination of kinetic mechanisms for forming knots and links in nucleic acid structures suggests that molecules involving base pairs between loops are likely to become topologically trapped in persistent frustrated states through the mechanism of 'helix-driven wrapping'. Augmentation of the state space to include both secondary structure and topology in describing the free energy landscape illustrates the potential for topological effects to influence the kinetics and function of nucleic acid strands. An experimental study of metastable complementary 'kissing hairpins' demonstrates that the topological constraint of zero linking number between the loops effectively prevents conversion to the minimum free energy helical state. Introduction of short catalyst strands that break the topological constraint causes rapid conversion to full duplex.

Lattice model of oligonucleotide hybridization in solution. I. Model and thermodynamics

The Journal of Chemical Physics, 2011

A coarse-grained lattice model of DNA oligonucleotides is proposed to investigate the general mechanisms by which single-stranded oligonucleotides hybridize to their complementary strands in solution. The model, based on a high-coordination cubic lattice, is simple enough to allow the direct simulation of DNA solutions, yet capturing how the fundamental thermodynamic processes are microscopically encoded in the nucleobase sequences. Physically relevant interactions are considered explicitly, such as interchain excluded volume, anisotropic base-pairing and base-stacking, and single-stranded bending rigidity. The model is studied in detail by a specially adapted Monte Carlo simulation method, based on parallel tempering and biased trials, which is designed to overcome the entropic and enthalpic barriers associated with the sampling of hybridization events of multiple single-stranded chains in solution. This methodology addresses both the configurational complexity of bringing together two complementary strands in a favorable orientation (entropic barrier) and the energetic penalty of breaking apart multiple associated bases in a double-stranded state (enthalpic barrier). For strands with sequences restricted to nonstaggering association and homogeneous pairing and stacking energies, base-pairing is found to dominate the hybridization over the translational and conformational entropy. For strands with sequence-dependent pairing corresponding to that of DNA, the complex dependence of the model's thermal stability on concentration, sequence, and degree of complementarity is shown to be qualitatively and quantitatively consistent both with experiment and with the predictions of statistical mechanical models.

Prediction of Hybridization and Melting for Double-Stranded Nucleic Acids

Biophysical Journal, 2004

This article presents a general statistical mechanical approach to describe self-folding together with the hybridization between a pair of finite length DNA or RNA molecules. The model takes into account the entire ensemble of single-and double-stranded species in solution and their mole fractions at different temperatures. The folding and hybridization models deal with matched pairs, mismatches, symmetric and asymmetric interior loops, bulges, and single-base stacking that might exist at duplex ends or at the ends of helices. All possible conformations of the single-and double-stranded species are explored. Only intermolecular basepairs are considered in duplexes at this stage. In particular we focus on the role of stacking between neighboring nucleotide residues of single unfolded strands as an important source of enthalpy change on helix formation which has not been modeled computationally thus far. Changes in the states of the single strands with temperature are shown to lead to a larger heat effect at higher temperature. An important consequence of this is that predictions of enthalpies, which are based on databases of nearest-neighbor energy parameters determined for molecules or duplexes with lower melting temperatures compared with the melting temperatures of the oligos for which they are used as a predictive tool, will be underestimated.

Molecular Modeling of DNA for a Mechanistic Understanding of Hybridization

2013

DNA microarrays are a potentially disruptive technology in the medical field, but their use in such settings is limited by poor reliability. Microarrays work on the principle of hybridization and can only be as reliable as this process is robust, yet little is known at the molecular level about how the surface affects the hybridization process. This work uses advanced molecular simulation techniques and an experimentally-parameterized coarsegrain model to determine the mechanism by which hybridization occurs on surfaces and to identify key factors that influence the accuracy of DNA microarrays. Comparing behavior in the bulk and on the surface showed, contrary to previous assumptions, that hybridization on surfaces is more energetically favorable than in the bulk. The results also show that hybridization proceeds through a mechanism where the untethered (target) strand often flips orientation. For evenly-lengthed strands, the surface stabilizes hybridization (compared to the bulk system) by reducing the barriers involved in the flipping event. Additional factors were also investigated, including the effects of stretching or compressing the probe strand as a model system to test the hypothesis that improving surface hybridization will improve microarray performance. The results in this regard indicate that selectivity can be increased by reducing overall sensitivity by a small degree. Another factor that was investigated was the effect of unevenly-lengthed strands. It was found that, when unevenly-lengthed strands were hybridized on a surface, the surface may destabilize hybridization compared to the bulk, but the degree of destabilization is dependent on the location of the matching sequence. Taken as a whole, the results offer an unprecedented view into the hybridization process on surfaces and provide some insights as to the poor reproducibility exhibited by microarrays. Namely, the prediction methods that are currently used to design microarrays based on duplex stability in the bulk do a poor job of estimating the stability of those duplexes in a microarray environment.

DNA hairpins destabilize duplexes primarily by promoting melting rather than by inhibiting hybridization

Nucleic Acids Research, 2015

The effect of secondary structure on DNA duplex formation is poorly understood. Using oxDNA, a nucleotide level coarse-grained model of DNA, we study how hairpins influence the rate and reaction pathways of DNA hybridzation. We compare to experimental systems studied by Gao et al. (1) and find that 3-base pair hairpins reduce the hybridization rate by a factor of 2, and 4-base pair hairpins by a factor of 10, compared to DNA with limited secondary structure, which is in good agreement with experiments. By contrast, melting rates are accelerated by factors of ∼100 and ∼2000. This surprisingly large speedup occurs because hairpins form during the melting process, and significantly lower the free energy barrier for dissociation. These results should assist experimentalists in designing sequences to be used in DNA nanotechnology, by putting limits on the suppression of hybridization reaction rates through the use of hairpins and offering the possibility of deliberately increasing dissociation rates by incorporating hairpins into single strands.

DNA Duplex Formation with a Coarse-Grained Model

Journal of chemical theory and computation, 2014

A middle-resolution coarse-grained model of DNA is proposed. The DNA chain is built of spherical and planar rigid bodies connected by elastic virtual bonds. The bonded part of the potential energy function is fit to potentials of mean force of model systems. The rigid bodies are sets of neutral, charged, and dipolar beads. Electrostatic and van der Waals interactions are parametrized by our recently developed procedure [Maciejczyk, M.; Spasic, A.; Liwo, A.; Scheraga, H.A. J. Comp. Chem. 2010, 31, 1644]. Interactions with the solvent and an ionic cloud are approximated by a multipole-multipole Debye-Hückel model. A very efficient R-RATTLE algorithm, for integrating the movement of rigid bodies, is implemented. It is the first coarse-grained model, in which both bonded and nonbonded interactions were parametrized ab initio and which folds stable double helices from separated complementary strands, with the final conformation close to the geometry of experimentally determined structures.

Weak tension accelerates hybridization and dehybridization of short oligonucleotides

The hybridization and dehybridization of DNA subject to tension is relevant to fundamental genetic processes and to the design of DNA-based mechanobiology assays. While strong tension accelerates DNA melting and decelerates DNA annealing, the effects of tension weaker than 5 pN are less clear. In this study, we developed a DNA bow assay, which uses the bending rigidity of double-stranded DNA (dsDNA) to exert weak tension on a single-stranded DNA (ssDNA) target in the range of 2pN to 6pN. Combining this assay with single-molecule FRET, we measured the hybridization and dehybridization kinetics between a 15 nt ssDNA under tension and a 8-9 nt oligo, and found that both the hybridization and dehybridization rates monotonically increase with tension for various nucleotide sequences tested. These findings suggest that the nucleated duplex in its transition state is more extended than the pure dsDNA or ssDNA counterpart. Our simulations using the coarse-grained oxDNA2 model indicate that ...