Effect of some polymerization methods on the imprinting performance of molecularly imprinted polymers for molecularly imprinted solid-phase extraction application (original) (raw)

Selective sample treatment using molecularly imprinted polymers

Journal of Chromatography A, 2007

The molecularly imprinted polymers (MIPs) are synthetic polymers possessing specific cavities designed for a target molecule. By a mechanism of molecular recognition, the MIPs are used as selective sorbents for the solid-phase extraction of target analytes from complex matrices. MIPs are often called synthetic antibodies in comparison with immuno-based sorbents; they offer some advantages including easy, cheap and rapid preparation and high thermal and chemical stability. This review describes the use of MIPs in solid-phase extraction with emphasis on their synthesis, the various parameters affecting the selectivity of the extraction, their potential to selectively extract analytes from complex aqueous samples or organic extracts, their on-line coupling with LC and their potential in miniaturized devices.

Molecularly imprinted polymers for bioanalytical sample preparation

Journal of Chromatography B, 2017

Molecularly imprinted polymers (MIP) are stable polymers with molecular recognition abilities, provided by the presence of a template during their synthesis, and are excellent materials with high selectivity for sample preparation in bioanalytical methods. This short review discusses aspects of MIP preparation and its applications as a sorbent material in pharmaceutical and biomedical analysis. MIP in different extraction configurations, including classical solid-phase extraction, solid-phase microextraction, magnetic molecularly imprinted solid-phase extraction, microextraction by packed sorbent and solid-phase extraction in pipette tips, are used to illustrate the good performance of this type of sorbent for sample preparation procedures of complex matrices, especially prior to bioanalytical approaches.

Molecularly imprinted polymers (MIPs) enable unwanted contaminants or high-value desirables to be efficiently extracted from processes, resulting in a decreased number of purification cycles and a more cost-efficient process

2008

In the development and manufacturing of active pharmaceutical ingredients (APIs) and their intermediates, purification consumes the bulk of the processing time and cost. Burgeoning technological advances in analysis, which make detection of impurities at ever-lower levels possible, exacerbates the time and cost demands. At the same time, there is a growing expectation among patients regarding the efficacy, safety and purity of medicines. These trends have created an urgent need for new molecular purification technologies in pharmaceutical production. This article reviews a novel polymer technologymolecular imprinting-that makes the creation of artificial receptor sites within stable polymer materials possible, enabling the provision of innovative solutions for the separations market. The market for the technology covers a wide range of activities, from analytical solid phase extraction (SPE) products through to large-scale solutions for selective extraction on an industrial scale.

Recent Applications of Molecularly Imprinted Sol-Gel Methodology in Sample Preparation

Molecules

Due to their selectivity and chemical stability, molecularly imprinted polymers have attracted great interest in sample preparation. Imprinted polymers have been applied for the extraction and the enrichment of different sorts of trace analytes in biological and environmental samples before their analysis. Additionally, MIPs are utilized in various sample preparation techniques such as SPE, SPME, SBSE and MEPS. Nevertheless, molecularly imprinted polymers suffer from thermal (stable only up to 150 °C) and mechanical stability issues, improper porosity and poor capacity. The sol-gel methodology as a promising alternative to address these limitations allowing the production of sorbents with controlled porosity and higher surface area. Thus the combination of molecularly imprinted technology and sol-gel technology can create influential materials with high selectivity, high capacity and high thermal stability. This work aims to present an overview of molecularly imprinted sol-gel polym...

Molecularly imprinted polymers as affinity-based separation media for sample preparation

Journal of Separation Science, 2009

This review article deals with molecularly imprinted polymers (MIPs) as affinitybased separation media for sample preparation. An over view of two types of MIPs (molecularly imprinted particle and monolith) used for the sample preparation and modes of molecularly imprinted SPE (online mode, offline mode, on-column extraction, SPME, and microextraction in packed syringe) is given, focusing on the advantages and disadvantages of these types and modes. Next, problems (template leakage and incompatibility with aqueous conditions) associated with molecularly imprinted SPE and how to overcome those problems are described. Finally, pharmaceutical, food, bioanalytical, and environmental application of molecularly imprinted SPE will be discussed.

Molecular imprinted polymers for separation science: A review of reviews

Journal of Separation Science, 2013

Molecular imprinted polymer is an artificial receptor made by imprinting molecules of a template in a polymer matrix followed by removing the template molecules via thorough washing to give the permanent template grooves. They show favored affinity to the template molecule compared to other molecules, and this property is the basic driving force for such diverse application of this techniques. Such techniques have been increasingly employed in a wide scope of applications such as chromatography, sample pretreatment, purification, catalysts, sensors, and drug delivery, etc., mostly in bioanalytical areas. A major part of them is related to development of new stationary phases and their application in chromatography and sample pretreatment. Embodiments of molecular imprinted polymer materials have been carried out in a variety of forms such as irregularly ground particles, regular spherical particles, nanoparticles, monoliths in a stainless steel or capillary column, open tubular layers in capillaries, surface attached thin layers, membranes, and composites, etc. There have been numerous review articles on molecular imprinted polymer issues. In this special review, the reviews in recent ca. 10 years will be categorized into several subgroups according to specified topics in separation science, and each review in each subgroup will be introduced in the order of date with brief summaries and comments on new developments and different scopes of prospects. Brief summaries of each categories and conclusive future perspectives are also given.

An enzyme-linked molecularly imprinted sorbent assay

Analyst, 2000

Based on a molecularly imprinted polymer, a competitive binding assay analogous to competitive enzyme immunoassay has been developed. The assay is specific for the herbicide 2,4-dichlorophenoxyacetic acid and uses, for the first time, an enzyme-labelled conjugate as a tracer. The label tobacco peroxidase allowed for colorimetric and chemiluminescence detection. The molecularly imprinted polymer was synthesised in the form of microspheres by precipitation polymerisation. The polymer efficiently and selectively bound the analyte in aqueous solution. Calibration curves were obtained corresponding to analyte concentrations ranging from 40-600 mg mL 21 for the colorimetric assay, and from 1-200 mg mL 21 for chemiluminescence assay.

Solid-Phase Extraction of Active Compounds from Natural Products by Molecularly Imprinted Polymers: Synthesis and Extraction Parameters

Polymers

Molecularly imprinted polymers (MIPs) are synthetic polymers with a predetermined selectivity for a particular analyte or group of structurally related compounds, making them ideal materials for separation processes. Hence, in sample preparation, MIPs are chosen as an excellent material to provide selectivity. Moreover, its use in solid-phase extraction, also referred to as molecular imprinted solid phase extraction (MISPE), is well regarded. In recent years, many papers have been published addressing the utilization of MIPs or MISPE as sorbents in natural product applications, such as synthesis. This review describes the synthesis and characterization of MIPs as a tool in natural product applications.

The Application of Molecularly Imprinted Polymers

Molecularly imprinted technology (MIT) has the characteristics of specificity and high selectivity, which is one of the most promising methodologies. Besides, the polymers are made using MIT as the functional material of solid-phase extraction and chromatographic fractionating and sensor, because of the characteristics of the high selectivity, the better stability and easy preparation. This review introduces the progress in the application of MIT and summarizes its application in the chemistry.