Nanosecond Laser Photolysis Studies of Chlorosomes and Artificial Aggregates Containing Bacteriochlorophyll e: Evidence for the Proximity of Carotenoids and Bacteriochlorophyll a in Chlorosomes from Chlorobium phaeobacteroides strain CL1401¶ (original) (raw)
2007, Photochemistry and Photobiology
Abstract
⌬A(; t), have been recorded with a view to probing pigment-pigment interactions in chlorosomes (control as well as carotenoid-depleted) and artificial aggregates of bacteriochlorophyll e (BChle). Control chlorosomes were isolated from Chlorobium phaeobacteroides strain CL1401, whose chromophores comprise BChle, bacteriochlorophyll a (BChla) and several carotenoid (Car) pigments; Car-depleted chlorosomes, from cells grown in cultures containing 2-hydroxybiphenyl. Artificial aggregates were prepared by dispersing BChle in aqueous phase in the presence of monogalactosyl diglyceride. In chlorosomes ⌬A(; t) shows, besides a signal attributable to triplet Car (with a half-life of about 4 s), signals in the Q y regions of both BChl. The BChla signal decays at the same rate as the Car signal, which is explained by postulating that some Car are in intimate contact with some baseplate BChla pigments, and that when a groundstate Car changes into a triplet Car, the absorption spectrum of its BChla neighbors undergoes a concomitant change (termed transient environment-induced perturbation). The signal in the Q y -region of BChle behaves differently: its amplitude falls, under reducing conditions, by more than a factor of two during the first 0.5 s (a period during which the Car signal suffers negligible diminution), and is much smaller under nonreducing conditions. The BChle signal is also attributed to transient environment-induced perturbation, but in this case the perturber is a BChle photoproduct (probably a triplet or a radical ion). The absence of long-lived BChle triplets in all three systems, and of long-lived BChla triplets in chlorosomes, indicates that BChle in densely packed assemblies is less vulnerable to photodamage than monomeric BChle and that, in chlorosome, BChla ¶Posted on the website on 6 September 2000.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (37)
- Blankenship, R. E., J. M. Olson and M. Miller (1995) Antenna complexes from green photosynthetic bacteria. In Anoxygenic Photosynthetic Bacteria (Edited by R. E. Blankenship, M. T. Madigan and C. E. Bauer), pp. 399-435. Kluwer, The Nether- lands.
- Olson, J. M. (1998) Chlorosome organization and function in green photosynthetic bacteria. Photochem. Photobiol. 67, 61- 75.
- Holzwarth, A. R., K. Griebenow and K. Schaffner (1990) A photosynthetic antenna system which contains a protein-free chromophore aggregate. Z. Naturforsch. 45, 203-296.
- Holzwarth, A. R. and K. Schaffner (1994) On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modelling study. Photosynth. Res. 41, 225-233.
- Mizoguchi, T. K., K. Matsuura, K. Shimada and Y. Koyama (1996) The structure of the aggregate form of bacteriochloro- phyll c showing the Q y absorption above 740 nm: a 1 H-NMR study. Chem. Phys. Lett. 260, 153-158.
- Buck, D. R. and W. S. Struve (1996) Tubular exciton models for BChl c antennae in chlorosomes from green photosynthetic bacteria. Photosynth. Res. 48, 367-377.
- Sakuragi, Y., N. U. Frigaard, K. Shimada and K. Matsuura (1999) Association of bacteriochlorophyll a with the CsmA pro- tein in chlorosomes of the photosynthetic green filamentous bac- terium Chloroflexus aurantiacus. Biochim. Biophys. Acta 1413, 172-180.
- Liaaen-Jensen, S. (1965) Bacterial carotenoids. XVIII. Aryl ca- rotenoids from Phaeobium. Acta Chem. Scand. 19, 1025-1030.
- Schmidt, K. (1980) A comparative study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus OK-70-fl and Chlorobium limi- cola f. thiosulfatophilum strain 6230. Arch. Microbiol. 124, 21- 31.
- Oelze, J. and J. R. Golecki (1995) Membranes and chlorosomes of green bacteria: structure, composition, and development. In Anoxygenic Photosynthetic Bacteria (Edited by R. E. Blanken- ship, M. T. Madigan and C. E. Bauer), pp. 259-278. Kluwer, The Netherlands.
- Borrego, C. M., J. B. Arellano, C. A. Abella `, T. Gillbro and L. J. Garcia-Gil (1999) The molar extinction coefficient of bacte- riochlorophyll e and the pigment stoichiometry in Chlorobium phaeobacteroides. Photosynth. Res. 60, 257-264.
- Frigaard, N. U., S. Takaichi, M. Hirota, K. Shimada and K. Matsuura (1997) Quinones in chlorosomes of green sulfur bac- teria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Arch. Mi- crobiol. 167, 343-349.
- van Noort, P. I., Y. Zhu, R. LoBrutto and R. E. Blankenship (1997) Redox effects on the excited-state lifetime in chloro- somes and bacteriochlorophyll c oligomers. Biophys. J. 72, 316- 325.
- van Dorssen, R. J., H. Vasmel and J. Amesz (1986) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. II. The chlorosome. Pho- tosynth. Res. 9, 33-45.
- Melø, T. B., N. U. Frigaard, K. Matsuura and K. R. Naqvi (2000) Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus auranticus. Spectrochim. Acta A 56, 2001-2010.
- Otte, S. C. M., J. C. van der Heiden, N. Pfennig and J. Amesz (1991) A comparative study of the optical characteristics of in- tact cells of photosynthetic green sulfur bacteria containing bac- teriochlorophyll c, d or e. Photosynth. Res. 28, 77-87.
- Cox, R. P., M. Miller, J. Aschenbru ¨cker, Y. Z. Ma and T. Gill- bro (1998) The role of bacteriochlorophyll e and carotenoids in light harvesting in brown-colored green sulfur bacteria. In Pho- tosynthesis: Mechanisms and Effects, Vol. 1. (Edited by G. Gar- ab), pp. 149-152. Kluwer, The Netherlands.
- Psencik, J., G. F. W. Searle, J. Hala and T. J. Schaafsma (1994) Fluorescence detected magnetic resonance (FDMR) of green sulfur photosynthetic bacteria Chlorobium sp. Photosynth. Res. 40, 1-10.
- Psencik, J., T. J. Schaafsma, G. F. W. Searle and J. Hala (1997) Fluorescence detected magnetic resonance of monomers and ag- gregates of bacteriochlorophylls of green sulfur bacteria Chlo- robium sp. Photosynth. Res. 52, 83-92.
- Carbonera, D., G. Giacometti, C. Vannini, P. D. Gerola, A. Vi- anelli, A. Maniero and L. C. Brunel (1998) Electron magnetic resonance of the chlorosomes from green sulfur bacterium Chlo- robium tepidum. In Photosynthesis: Mechanisms and Effects, Vol. 1. (Edited by G. Garab), pp. 109-112. Kluwer, The Neth- erlands.
- Foidl, M., J. R. Golecki and J. Oelze (1997) Phototrophic growth and chlorosome formation in Chloroflexus aurantiacus under conditions of carotenoid deficiency. Photosynth. Res. 54, 219-226.
- Frese, R., U. Oberheide, I. van Stokkum, R. van Grondelle, M. Foidl, J. Oelze and H. van Amerongen (1997) The organization of bacteriochlorophyll c in Chloroflexus aurantiacus and the structural role of carotenoids and protein. Photosynth. Res. 54, 115-126.
- Arellano, J. B., J. Psencik, C. M. Borrego, Y. Z. Ma, R. Gu- yoneaud, J. Garcia-Gil and T. Gillbro (2000) Effect of carot- enoid biosynthesis inhibition on the chlorosome organization in Chlorobium phaeobacteroides strain CL1401. Photochem. Pho- tobiol. 71, 715-723.
- Tru ¨per, H. G. and N. Pfennig (1992) The family Chlorobiaceae. In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed. (Edited by A. Balows, H. G. Tru ¨per, M. Dworkin, W. Harder and K. H. Schleifer), pp. 3583-3592. Springer, Germany.
- Gerola, P. D. and J. M. Olson (1986) A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. Biochim. Biophys. Acta 848, 69-76.
- Steensgaard, D. B., K. Matsuura, R. P. Cox and M. Miller (1997) Changes in bacteriochlorophyll c organization during acid treatment of chlorosomes from Chlorobium tepidum. Pho- tochem. Photobiol. 65, 129-134.
- Borrego, C. M. and L. J. Garcia-Gil (1994) Separation of bac- teriochlorophyll homologues from green photosynthetic sulfur bacteria by reverse-phase HPLC. Photosynth. Res. 41, 157-163.
- Hirota, M., T. Moriyama, K. Shimada, M. Miller, J. M. Olson and K. Matsuura (1992) High degree of organization of bacte- riochlorophyll c in chlorosomes-like aggregates spontaneously assembled in aqueous solution. Biochim. Biophys. Acta 1099, 271-274.
- Naqvi, K. R., T. B. Melø, B. B. Raju, T. Ja ´vorfi, I. Simidjiev and G. Garab (1997) Quenching of chlorophyll a singlets and triplets by carotenoids in light-harvesting complex of photosys- tem II: comparison of aggregates with trimers. Spectrochim. Acta A 53, 2659-2667.
- Bu ¨chel, C., K. R. Naqvi and T. B. Melø (1998) Pigment-Pig- Photochemistry and Photobiology, 2000, 72(5) 675 ment interactions in thylakoids and LHCII of chlorophyll a/c containing alga Pleurochloris meiringensis: analysis of fluores- cence-excitation and triplet-minus-singlet spectra. Spectrochim. Acta A 54, 719-726.
- Ohta, N., Y. Iwaki, T. Ito, I. Yamazaki and A. Osuka (1999) Photoinduced charged transfer along a meso,meso-linked por- phyrin array. J. Phys. Chem. B 103, 11 242-11 245.
- Jhutti, C. S. (1999) Time resolved multichannel spectroscopy of molecular triplet states. M.Sc. thesis, Norwegian University of Science and Technology.
- Van der Voss, R., D. Carobonera and A. J. Hoff (1991) Micro- wave and optical spectroscopy of carotenoid triplets in light- harvesting complex LHCII of spinach by absorbance-detected magnetic resonance. Appl. Magn. Reson. 2, 179-202.
- Krasnovsky, A. A., P. Cheng, R. E. Blankenship, T. A. Moore and D. Gust (1993) The photophysics of monomeric bacterio- chlorophylls c and d and their derivatives: properties of the trip- let state and singlet oxygen photogeneration and quenching. Photochem. Photobiol. 57, 324-330.
- Krasnovsky, A. A., J. Lopez, P. Cheng, P. A. Liddell, R. E. Blankenship, T. A. Moore and D. Gust (1994) Generation and quenching of singlet molecular oxygen by aggregated bacterio- chlorophyll d in model systems and chlorosomes. Photosynth. Res. 40, 191-198.
- Van Walree, C. A., Y. Sakuragi, D. B. Steensgaard, C. S. Bo ¨s- inger, N.-U. Frigaard, R. P. Cox, A. R. Holzwarth and M. Miller (1999) Effect of alkaline treatment on bacteriochlorophyll a, quinones and energy transfer in chlorosomes from Chlorobium tepidum and Chlorobium phaeobacteroides. Photochem. Pho- tobiol. 69, 322-328.
- Carbonera, D., M. D. Valentin, C. Corvaja, G. Agostini, G. Gia- cometti, P. A. Liddell, D. Kuciauskas, A. L. Moore, T. A. Moore and D. Gust (1998) EPR investigation of photoinduced radical pair formation and decay to a triplet state in carotene- porphyrin-fullerene triad. J. Am. Chem. Soc. 120, 4398-4405.