Defining the Mandate of Proteomics in the Post-Genomics Era: Workshop Report ©2002 National Academy of Sciences, Washington, D.C., USA. Reprinted with permission from the National Academies Press for the National Academy of Sciences. All rights reserved. The original report may be viewed online a... (original) (raw)

Defining the mandate of proteomics in the post-genomics era: workshop report

Molecular & cellular proteomics : MCP, 2002

Research in proteomics is the next step after genomics in understanding life processes at the molecular level. In the largest sense proteomics encompasses knowledge of the structure, function and expression of all proteins in the biochemical or biological contexts of all organisms. Since that is an impossible goal to achieve, at least in our lifetimes, it is appropriate to set more realistic, achievable goals for the field. Up to now, primarily for reasons of feasibility, scientists have tended to concentrate on accumulating information about the nature of proteins and their absolute and relative levels of expression in cells (the primary tools for this have been 2D gel electrophoresis and mass spectrometry). Although these data have been useful and will continue to be so, the information inherent in the broader definition of proteomics must also be obtained if the true promise of the growing field is to be realized. Acquiring this knowledge is the challenge for researchers in prote...

Defining the Mandate of Proteomics in the Post-Genomics Era

2002

Research in proteomics is the next logical step after genomics in understanding life processes at the molecular level. In the largest sense proteomics encompasses knowledge of the structure, function and expression of all proteins in the biochemical or biological contexts of all organisms. Since that is an impossible goal to achieve, at least in our lifetimes, it is appropriate to set more realistic, achievable goals for the field. Up to now, primarily for reasons of feasibility, scientists have tended to concentrate on accumulating information about the nature of proteins and their absolute and relative levels of expression in cells (the primary tools for this have been 2D gel electrophoresis and mass spectrometry). Although these data have been useful and will continue to be so, the information inherent in the broader definition of proteomics must also be obtained if the true promise of the growing field is to be realized. Acquiring this knowledge is the challenge for researchers in proteomics and the means to support these endeavors need to be provided. An attempt has been made to present the major issues confronting the field of proteomics and two clear messages come through in this report. The first is that the mandate of proteomics is and should be much broader than is frequently recognized. The second is that proteomics is much more complicated than sequencing genomes. This will require new technologies but it is highly likely that many of these will be developed. Looking back 10 to 20 years from now, the question is: Will we have done the job wisely or wastefully? This report summarizes the presentations made at a symposium at the National Academy of Sciences on

Guidelines for the next 10 years of proteomics

2006

In the last ten years, the field of proteomics has expanded at a rapid rate. A range of exciting new technology has been developed and enthusiastically applied to an enormous variety of biological questions. However, the degree of stringency required in proteomic data generation and analysis appears to have been underestimated. As a result, there are likely to be numerous published findings that are of questionable quality, requiring further confirmation and/or validation. This manuscript outlines a number of key issues in proteomic research, including those associated with experimental design, differential display and biomarker discovery, protein identification and analytical incompleteness. In an effort to set a standard that reflects current thinking on the necessary and desirable characteristics of publishable manuscripts in the field, a minimal set of guidelines for proteomics research is then described. These guidelines will serve as a set of criteria which editors of PROTEOMICS will use for assessment of future submissions to the Journal.

Proteomics--a new player in the post-genomic era

Indian journal of biochemistry & biophysics, 2002

In the post-genomic era the concept of personalized medicine and molecular medicine emphasizes the utility of the proteomics approach. Proteomics is the global analysis of cellular proteins and complements the genomics approach. Proteins, in principle do all the work of the cell and ultimately dictate all biological processes and the cellular fate. Proteomics uses a combination of sophisticated techniques including two-dimensional (2D) gel electrophoresis, image analysis, mass spectrometry, amino acid sequencing and bioinformatics to identify and characterize proteins. This review aims at providing the various approaches and pitfalls associated with this technique and gives a brief overview of the utility of this approach in the area of biomedical research.

Proteomics: the first decade and beyond

Nature Genetics, 2003

Proteomics is the systematic study of the many and diverse properties of proteins in a parallel manner with the aim of providing detailed descriptions of the structure, function and control of biological systems in health and disease. Advances in methods and technologies have catalyzed an expansion of the scope of biological studies from the reductionist biochemical analysis of single proteins to proteome-wide measurements. Proteomics and other complementary analysis methods are essential components of the emerging 'systems biology' approach that seeks to comprehensively describe biological systems through integration of diverse types of data and, in the future, to ultimately allow computational simulations of complex biological systems.

A perspective on proteomics: current applications, challenges and potential uses

Agriculture and Biology Journal of North America, 2010

Biological sciences are experiencing an ongoing information revolution. Proteome-wide functional classification using bioinformatics approaches is becoming an important method for revealing unknown protein functions. Most successful computational approaches for protein function prediction integrate multiple genomics and proteomics data sources to make inferences about the function of unknown proteins. Research into gene expression and proteomics enable scientists to decipher the functions of genes and their protein products, and to get a clearer picture of the complex regulatory networks that control fundamental biological processes. The global study of cellular proteins by proteomics may be able to provide the complete picture. Use of proteins to study gene function and genetic information is possibly the most reliable method but costly and labour intensive. Analysis of gene-expression patterns is no less powerful concept than proteomics when it comes to identification of the characteristics of signalling pathways or disease states. This review discusses current applications of proteomics, challenges and potential uses.

Proteomics: a pragmatic perspective

Nature Biotechnology, 2010

Objective Scope Example Approach Discovery of new entities Broad scale Focused Comprehensive Global Selected Assay for known entities Restrictive or targeted Proteomics Expression profiling HUPO PPP PTM discovery Protein complexes Biomarker candidate verification SRM or MRM Peptide quantification Peptide sequencing, database searching Peptide identification and quantification

Proteomics: Taking Over Where Genomics Leaves Off

Czech J. Genet. Plant Breed, 2010

Proteins are molecules that carry out major functions in the cell. Since the proteins cannot be replicated nor do they have any complemen-tary sequences like DNA or RNA, the study of the protein global expression is rather difficult. However, new technologies that reliably ...