Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode: oxygen reduction and hydrogen oxidation in the presence of CO (review article (original) (raw)

Kinetics of Oxygen Reduction Reaction of Polymer-Coated MWCNT-Supported Pt-Based Electrocatalysts for High-Temperature PEM Fuel Cell

Energies

Sluggish oxygen reduction reaction (ORR) of electrodes is one of the main challenges in fuel cell systems. This study explored the kinetics of the ORR reaction mechanism, which enables us to understand clearly the electrochemical activity of the electrode. In this research, electrocatalysts were synthesized from platinum (Pt) catalyst with multi-walled carbon nanotubes (MWCNTs) coated by three polymers (polybenzimidazole (PBI), sulfonated tetrafluoroethylene (Nafion), and polytetrafluoroethylene (PTFE)) as the supporting materials by the polyol method while hexachloroplatinic acid (H2PtCl6) was used as a catalyst precursor. The oxygen reduction current of the synthesized electrocatalysts increased that endorsed by linear sweep voltammetry (LSV) curves while increasing the rotation rates of the disk electrode. Additionally, MWCNT-PBI-Pt was attributed to the maximum oxygen reduction current densities at −1.45 mA/cm2 while the minimum oxygen reduction current densities of MWCNT-Pt wer...

Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique

Journal of The Electrochemical Society, 2015

The rotating disk electrode (RDE) technique is being extensively used as a screening tool to estimate the activity of novel PEMFC electrocatalysts synthesized in lab-scale (mg) quantities. Discrepancies in measured activity attributable to glassware and electrolyte impurity levels, as well as conditioning, protocols and corrections are prevalent in the literature. The electrochemical response to a broad spectrum of commercially sourced perchloric acid and the effect of acid molarity on impurity levels and solution resistance were also assessed. Our findings reveal that an area specific activity (SA) exceeding 2.0 mA/cm 2 (20 mV/s, 25 • C, 100 kPa, 0.1 M HClO 4) for polished poly-Pt is an indicator of impurity levels that do not impede the accurate measurement of the ORR activity of Pt based catalysts. After exploring various conditioning protocols to approach maximum utilization of the electrochemical area (ECA) and peak ORR activity without introducing catalyst degradation, an investigation of measurement protocols for ECA and ORR activity was conducted. Down-selected protocols were based on the criteria of reproducibility, duration of experiments, impurity effects and magnitude of pseudo-capacitive background correction. Statistical reproducibility of ORR activity for poly-Pt and Pt supported on high surface area carbon was demonstrated.

Carbon supported nano-sized Pt–Pd and Pt–Co electrocatalysts for proton exchange membrane fuel cells

International Journal of Hydrogen Energy, 2009

Pt-Co/C Membrane-electrode assembly PEM fuel cell a b s t r a c t Nano-sized Pt-Pd/C and Pt-Co/C electrocatalysts have been synthesized and characterized by an alcohol-reduction process using ethylene glycol as the solvent and Vulcan XC-72R as the supporting material. While the Pt-Pd/C electrodes were compared with Pt/C (20 wt.% E-TEK) in terms of electrocatalytic activity towards oxidation of H 2 , CO and H 2 -CO mixtures, the Pt-Co/C electrodes were evaluated towards oxygen reduction reaction (ORR) and compared with Pt/C (20 wt.% E-TEK) and Pt-Co/C (20 wt.% E-TEK) and Pt/C (46 wt.% TKK) in a single cell. In addition, the Pt-Pd/C and Pt-Co/C electrocatalyst samples were characterized by XRD, XPS, TEM and electroanalytical methods. The TEM images of the carbon supported platinum alloy electrocatalysts show homogenous catalyst distribution with a particle size of about 3-4 nm. It was found that while the Pt-Pd/C electrocatalyst has superior CO tolerance compared to commercial catalyst, Pt-Co/C synthesized by polyol method has shown better activity and stability up to 60 C compared to commercial catalysts. Single cell tests using the alloy catalysts coated on Nafion-212 membranes with H 2 and O 2 gases showed that the fuel cell performance in the activation and the ohmic regions are almost similar comparing conventional electrodes to Pt-Pd anode electrodes. However, conventional electrodes give a better performance in the ohmic region comparing to Pt-Co cathode. It is worth mentioning that these catalysts are less expensive compared to the commercial catalysts if only the platinum contents were considered.

Carbon Monoxide Tolerant Pt-Based Electrocatalysts for H2-PEMFC Applications: Current Progress and Challenges

Catalysts, 2021

The activity degradation of hydrogen-fed proton exchange membrane fuel cells (H2-PEMFCs) in the presence of even trace amounts of carbon monoxide (CO) in the H2 fuel is among the major drawbacks currently hindering their commercialization. Although significant progress has been made, the development of a practical anode electrocatalyst with both high CO tolerance and stability has still not occurred. Currently, efforts are being devoted to Pt-based electrocatalysts, including (i) alloys developed via novel synthesis methods, (ii) Pt combinations with metal oxides, (iii) core–shell structures, and (iv) surface-modified Pt/C catalysts. Additionally, the prospect of substituting the conventional carbon black support with advanced carbonaceous materials or metal oxides and carbides has been widely explored. In the present review, we provide a brief introduction to the fundamental aspects of CO tolerance, followed by a comprehensive presentation and thorough discussion of the recent stra...

Pt-Co/C Electrocatalysts for Oxygen Reduction in H[sub 2]/O[sub 2] PEMFCs Synthesized by Borohydride Method

Journal of The Electrochemical Society, 2004

A Pt-Co/C electrocatalyst with Pt:Co atomic ratio 85:15, prepared by a low-temperature chemical reduction with sodium borohydride, was studied as possible cathode material for polymer electrolyte membrane fuel cells ͑PEMFCs͒. The physical characterization of this electrocatalyst was performed by energy-dispersive X-ray analysis, X-ray diffraction, and transmission electron microscopy. The performance of the material was evaluated by cyclic voltammetry and polarization experiments in a single PEMFC and compared with those of an unalloyed Pt/C catalyst prepared by the same method and a commercial Pt-Co/C catalyst. Both the Pt-Co/C catalysts were also submitted to a thermal treatment in a reducing atmosphere.

Fabrication and Characterization of High-activity Pt/C Electrocatalysts for Oxygen Reduction

Bulletin of the Korean Chemical Society, 2010

A 20 wt % Pt/C is fabricated and characterized for use as the cathode catalyst in a polymer electrolyte membrane fuel cell (PEMFC). By using the polyol method, the fabrication process is optimized by modifying the carbon addition sequence and precursor mixing conditions. The crystallographic structure, particle size, dispersion, and activity toward oxygen reduction of the as-prepared catalysts are compared with those of commercial Pt/C catalysts. The most effective catalyst is obtained by ultrasonic treatment of ethylene glycol-carbon mixture and immediate mixing of this mixture with a Pt precursor at the beginning of the synthesis. The catalyst exhibits very uniform particle size distribution without agglomeration. The mass activities of the as-prepared catalyst are 13.4 mA/mgPt and 51.0 mA/mgPt at 0.9 V and 0.85 V, respectively, which are about 1.7 times higher than those of commercial catalysts.