Enzymatic versus Inorganic Oxygen Reduction Catalysts: Comparison of the Energy Levels in a Free-Energy Scheme (original) (raw)

Synergistic Effects of Active Sites' Nature and Hydrophilicity on the Oxygen Reduction Reaction Activity of Pt-Free Catalysts

Nanomaterials (Basel, Switzerland), 2018

This work highlights the importance of the hydrophilicity of a catalyst's active sites on an oxygen reduction reaction (ORR) through an electrochemical and physico-chemical study on catalysts based on nitrogen-modified carbon doped with different metals (Fe, Cu, and a mixture of them). BET, X-ray Powder Diffraction (XRPD), micro-Raman, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Scanning Transmission Electron Microscopy (STEM), and hydrophilicity measurements were performed. All synthesized catalysts are characterized not only by a porous structure, with the porosity distribution centered in the mesoporosity range, but also by the presence of carbon nanostructures. In iron-doped materials, these nanostructures are bamboo-like structures typical of nitrogen carbon nanotubes, which are better organized, in a larger amount, and longer than those in the copper-doped material. Electrochemical ORR results highlight that the presence of iron and nitrogen...

Bioinspired Electrocatalysis of Oxygen Reduction Reaction in Fuel Cells Using Molecular Catalysts

Advanced materials (Deerfield Beach, Fla.), 2018

One of the most important chemical reactions for renewable energy technologies such as fuel cells and metal-air batteries today is oxygen reduction. Due to the relatively sluggish reaction kinetics, catalysts are necessary to generate high power output. The most common catalyst for this reaction is platinum, but its scarcity and derived high price have raised the search for abundant nonprecious metal catalysts. Inspired from enzymatic processes which are known to catalyze oxygen reduction reaction efficiently, employing transition metal complexes as their catalytic centers, many are working on the development of bioinspired and biomimetic catalysts of this class. This research news article gives a glimpse of the recent progress on the development of bioinspired molecular catalyst for oxygen reduction, highlighting the importance of the molecular structure of the catalysts, from advancements in porphyrins and phthalocyanines to the most recent work on corroles, and 3D networks such a...