HEI10 negatively regulates cell invasion by inhibiting cyclin B/Cdk1 and other promotility proteins (original) (raw)
Related papers
Cyfip1 Is a Putative Invasion Suppressor in Epithelial Cancers
Cell, 2009
Identification of bona fide tumor suppressors is often challenging because of the large number of genetic alterations present in most human cancers. To evaluate candidate genes present within chromosomal regions recurrently deleted in human cancers, we coupled high-resolution genomic analysis with a two-stage genetic study using RNA interference (RNAi). We found that Cyfip1, a subunit of the WAVE complex, which regulates cytoskeletal dynamics, is commonly deleted in human epithelial cancers. Reduced expression of CYFIP1 is commonly observed during invasion of epithelial tumors and is associated with poor prognosis in this setting. Silencing of Cyfip1 disturbed normal epithelial morphogenesis in vitro and cooperated with oncogenic Ras to produce invasive carcinomas in vivo. Mechanistically, we have linked alterations in WAVE-regulated actin dynamics with impaired cell-cell adhesion and cell-ECM interactions. Thus, we propose Cyfip1 as an invasion suppressor gene.
BMC Cancer, 2013
Background: UCN-01 (7-hydroxystaurosporine), a protein kinase inhibitor, has attracted a great deal of attention as a potent antitumour agent. Several clinical trials of UCN-01 alone or in combination with other agents for different tumour types are currently underway, and some of these trials have had positive results. Hepatocellular carcinoma has high incidence rates and is associated with poor prognosis and high mortality rates. Methods: Three different hepatoma cell lines (Huh7, HepG2, and Hep3B) were treated with different concentrations of UCN-01, and the anti-tumour effects of UCN-01 were evaluated. Following UCN-01 treatment, cell growth was measured using an MTT assay, cell cycle arrest was assayed using flow cytometry, and the mechanisms of cell cycle arrest and invasion inhibition were investigated through western blotting and a Matrigel invasion assay. Results: After a 72-h UCN-01 treatment, the growth of different hepatoma cell lines was significantly inhibited in a dose-dependent manner, with IC50 values ranging from 69.76 to 222.74 nM. Flow cytometry results suggested that UCN-01 inhibits proliferation in the hepatoma cells by inducing S and G2/M phase arrest, but not G1/S arrest, which differs from previous reports that used other tumour cell lines. Western blot results illustrated that UCN-01 induces a G2/M phase arrest, regardless of the status of the p53/P21 waf1 pathway, whereas the CHK2/CDC25C pathway and the p53/p21 waf1 pathway were involved in the UCN-01-induced S phase arrest. UCN-01 remarkably inhibited Huh7 cell invasion in a time-dependent manner. Suppression of Huh7 cell invasion may be due to the down-regulation of phosphorylated β-catenin by UCN-01. Conclusions: These findings suggest that UCN-01 induces hepatoma cell growth inhibition by regulating the p53/ p21 waf1 and CHK2/CDC25 pathways. Suppression of Huh7 cell invasion by UCN-01 may be due to the downregulation of phosphorylated β-catenin. These data lend support for further studies on UCN-01 as a promising anti-HCC candidate.
Ubiquitin in Cell-Cycle Regulation and Dysregulation in Cancer
Annual Review of Cancer Biology, 2017
Uncontrolled cell proliferation and genomic instability are common features of cancer and can arise from, respectively, the loss of cell-cycle control and defective checkpoints. Ubiquitin-mediated proteolysis, ultimately executed by ubiquitin-ligating enzymes (E3s), plays a key part in cell-cycle regulation and is dominated by two multisubunit E3s, the anaphase-promoting complex (or cyclosome) (APC/C) and SKP1–cullin-1–F-box (SCF) complex. We highlight the role of APC/C and the SCF bound to F-box proteins, FBXW7, SKP2, and β-TrCP, in regulating the abundance of select fundamental proteins, primarily during the cell cycle, that are associated with human cancer. The clinical success of the first proteasome inhibitor, bortezomib, in treating multiple myeloma and mantle-cell lymphoma set the precedent for viewing the ubiquitin–proteasome system as a druggable target for cancer. Given that there are more E3s than kinases, selective, small-molecule E3 inhibitors have the potential of open...
Dissection of HEF1-dependent functions in motility and transcriptional regulation
Journal of Cell Science, 2002
Cas-family proteins have been implicated as signaling intermediaries in diverse processes including cellular attachment, motility, growth factor response, apoptosis and oncogenic transformation. The three defined Cas-family members (p130Cas, HEF1/Cas-L and Efs/Sin) are subject to multiple forms of regulation (including cell-cycle-and cell-attachment-mediated post-translational modification and cleavage) that complicate elucidation of the function of specific Cas proteins in defined biological processes. To explore the biological role of HEF1 further, we have developed a series of cell lines in which HEF1 production is regulated by an inducible promoter. In this system, HEF1 production rapidly induces changes in cellular morphology and motility, enhancing cell speed and haptotaxis towards fibronectin in a process partially dependent on intact ERK and p38 MAPK signaling pathways. Finally, cDNA expression array analysis and subsequent studies indicate that HEF1 production increases levels of mRNA transcripts encoding proteins that are associated with motility, cell transformation and invasiveness, including several metalloproteinases, MLCK, p160ROCK and ErbB2. Upregulation of such proteins suggests mechanisms through which misregulation of HEF1 may be involved in cancer progression.
The Fbx4 Tumor Suppressor Regulates Cyclin D1 Accumulation and Prevents Neoplastic Transformation
Molecular and Cellular Biology, 2011
Skp1-Cul1-F-box (SCF) E3 ubiquitin ligase complexes modulate the accumulation of key cell cycle regulatory proteins. Following the G 1 /S transition, SCF Fbx4 targets cyclin D1 for proteasomal degradation, a critical event necessary for DNA replication fidelity. Deregulated cyclin D1 drives tumorigenesis, and inactivating mutations in Fbx4 have been identified in human cancer, suggesting that Fbx4 may function as a tumor suppressor. Fbx4 ؉/؊ and Fbx4 ؊/؊ mice succumb to multiple tumor phenotypes, including lymphomas, histiocytic sarcomas and, less frequently, mammary and hepatocellular carcinomas. Tumors and premalignant tissue from Fbx4 ؉/؊ and Fbx4 ؊/؊ mice exhibit elevated cyclin D1, an observation consistent with cyclin D1 as a target of Fbx4. Molecular dissection of the Fbx4 regulatory network in murine embryonic fibroblasts (MEFs) revealed that loss of Fbx4 results in cyclin D1 stabilization and nuclear accumulation throughout cell division. Increased proliferation in early passage primary MEFs is antagonized by DNA damage checkpoint activation, consistent with nuclear cyclin D1-driven genomic instability. Furthermore, Fbx4 ؊/؊ MEFs exhibited increased susceptibility to Ras-dependent transformation in vitro, analogous to tumorigenesis observed in mice. Collectively, these data reveal a requisite role for the SCF Fbx4 E3 ubiquitin ligase in regulating cyclin D1 accumulation, consistent with tumor suppressive function in vivo.
Merlin/NF2 Suppresses Tumorigenesis by Inhibiting the E3 Ubiquitin Ligase CRL4DCAF1 in the Nucleus
Cell, 2010
Current models imply that the FERM domain protein Merlin, encoded by the tumor suppressor NF2, inhibits mitogenic signaling at or near the plasma membrane. Here, we show that the closed, growth inhibitory form of Merlin accumulates in the nucleus, binds to the E3 ubiquitin ligase CRL4 DCAF1 , and suppresses its activity. Depletion of DCAF1 blocks the promitogenic effect of inactivation of Merlin. Conversely, enforced expression of a Merlin-insensitive mutant of DCAF1 counteracts the antimitogenic effect of Merlin. Re-expression of Merlin and silencing of DCAF1 induce a similar, tumor-suppressive program of gene expression. Tumor-derived mutations invariably disrupt Merlin's ability to interact with or inhibit CRL4 DCAF1 . Finally, depletion of DCAF1 inhibits the hyperproliferation of Schwannoma cells from NF2 patients and suppresses the oncogenic potential of Merlin-deficient tumor cell lines. We propose that Merlin suppresses tumorigenesis by translocating to the nucleus to inhibit CRL4 DCAF1
Cancer Research, 2010
Cyclin D1 belongs to the family of proteins that regulates progression through the G1-S phase of the cell cycle through binding to cyclin dependent kinase 4 to phosphorylate the retinoblastoma protein and release E2F transcription factors for progression through cell cycle. Several cancers, including breast, colon and prostate over-express the cyclin D1 gene. However, the correlation between cyclin D1 over-expression with E2F target gene regulation or cyclin dependent kinasedependent cyclin D1 activity with tumor development have not been identified. This suggests that the role of cyclin D1 in oncogenesis may be independent of its function as a cell cycle regulator. One such function is the role of cyclin D1 in cell adhesion and motility. Filamin A, a member of the actin-binding filamin protein family, regulates signaling events involved in cell motility and invasion. Filamin A has also been associated with a variety of cancers including lung, prostate, melanoma, human bladder cancer, and neuroblastoma. We hypothesized that elevated cyclin D1 facilitates motility in the invasive MDA-MB-231 breast cancer cell line. We show that MDA-MB-231 motility is affected by disturbing cyclin D1 levels or cyclin D1-cdk4/6 kinase activity. Using mass spectrometry, we found that cyclin D1 and Filamin A co-immunoprecipitate and that lower levels of cyclin D1 are associated with decreased phosphorylation of FLNa at serine 2152 and 1459. We also identify many proteins related to cytoskeletal function, biomolecular synthesis, organelle biogenesis, and calcium regulation whose levels of expression change concomitant with decreased cell motility induced by decreased cyclin D1 and cyclin D1-cdk4/6 activity.
Oncogene, 2006
The neurofibromatosis type 2 NF2 gene product, merlin, is a tumor suppressor frequently inactivated in malignant mesothelioma (MM). To investigate a possible correlation between merlin inactivation and MM invasiveness, we restored merlin expression in NF2-deficient MM cells. Re-expression of merlin markedly inhibited cell motility, spreading and invasiveness, properties connected with the malignant phenotype of MM cells. To test directly whether merlin inactivation promotes invasion in a nonmalignant system, we used small interfering RNA to silence Nf2 in mouse embryonic fibroblasts (MEFs) and found that downregulation of merlin resulted in enhanced cell spreading and invasion. To delineate signaling events connected with this phenotype, we investigated the effect of merlin expression on focal adhesion kinase (FAK), a key component of cellular pathways affecting migration and invasion. Expression of merlin attenuated FAK phosphorylation at the critical phosphorylation site Tyr397 and disrupted the interaction of FAK with its binding partners Src and p85, the regulatory subunit of phosphatidylinositol-3-kinase. In addition, NF2-null MM cells stably overexpressing FAK showed increased invasiveness, which decreased significantly when merlin expression was restored. Collectively, these findings suggest that merlin inactivation is a critical step in MM pathogenesis and is related, at least in part, with upregulation of FAK activity.
Hepatology, 2010
A high incidence of tumor recurrence and metastasis has been reported in hepatocellular carcinoma (HCC) patients; however, the underlying molecular mechanisms are largely unknown. In the present study a novel metastasis-related gene, eukaryotic initiation factor 5A2 (EIF5A2), was characterized for its role in HCC metastasis and underlying molecular mechanisms. Overexpression of EIF5A2 messenger RNA (mRNA) was detected in 50/81 (61.7%) of HCCs, which was significantly higher than those in nontumorous liver tissues. Compared with matched primary HCC, higher expression of EIF5A2 protein was observed in 25/47 (53.2%) of metastatic tumors. Functional studies found that ectopic expression of EIF5A2 could enhance cancer cell migration and invasion in vitro and tumor metastasis in vivo in an experimental mouse model. Moreover, inhibition of EIF5A by small interfering RNA (siRNA) or deoxyhypusine synthase (DHPS) inhibitor GC7, which inhibits EIF5A2 maturation, could effectively decrease cell motility. Further study found that EIF5A2 was able to induce epithelial-mesenchymal transition (EMT), a key event in tumor invasion and metastasis, characterized by down-regulation of epithelial markers (E-cadherin and β-catenin) and up-regulation of mesenchymal markers (fibronectin, N-cadherin, α-SMA, and vimentin). In addition, EIF5A2 could also activate RhoA/Rac1 to stimulate the formation of stress fiber and lamellipodia. Conclusion: EIF5A2 plays an important role in HCC invasion and metastasis by inducing EMT, as well as stimulating cytoskeleton rearrangement through activation of RhoA and Rac1. (HEPATOLOGY 2010.)