High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome (original) (raw)

The genome of Eucalyptus grandis

Eucalypts are the world’s most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways

BMC Genomics, 2009

Background: There is little information about the DNA sequence variation within and between closely related plant species. The combination of re-sequencing technologies, large-scale DNA pools and availability of reference gene sequences allowed the extensive characterisation of single nucleotide polymorphisms (SNPs) in genes of four biosynthetic pathways leading to the formation of ecologically relevant secondary metabolites in Eucalyptus. With this approach the occurrence and patterns of SNP variation for a set of genes can be compared across different species from the same genus.

Evolutionary insights from de novo transcriptome assembly and SNP discovery in California white oaks

BMC Genomics, 2015

Background: Reference transcriptomes provide valuable resources for understanding evolution within and among species. We de novo assembled and annotated a reference transcriptome for Quercus lobata and Q. garryana and identified single-nucleotide polymorphisms (SNPs) to provide resources for forest genomicists studying this ecologically and economically important genus. We further performed preliminary analyses of genes important in interspecific divergent (positive) selection that might explain ecological differences among species, estimating rates of nonsynonymous to synonymous substitutions (d N /d S ) and Fay and Wu's H. Functional classes of genes were tested for unusually high d N /d S or low H consistent with divergent positive selection.

De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq

BMC Genomics, 2010

Background: De novo assembly of transcript sequences produced by short-read DNA sequencing technologies offers a rapid approach to obtain expressed gene catalogs for non-model organisms. A draft genome sequence will be produced in 2010 for a Eucalyptus tree species (E. grandis) representing the most important hardwood fibre crop in the world. Genome annotation of this valuable woody plant and genetic dissection of its superior growth and productivity will be greatly facilitated by the availability of a comprehensive collection of expressed gene sequences from multiple tissues and organs. Results: We present an extensive expressed gene catalog for a commercially grown E. grandis × E. urophylla hybrid clone constructed using only Illumina mRNA-Seq technology and de novo assembly. A total of 18,894 transcriptderived contigs, a large proportion of which represent full-length protein coding genes were assembled and annotated. Analysis of assembly quality, length and diversity show that this dataset represent the most comprehensive expressed gene catalog for any Eucalyptus tree. mRNA-Seq analysis furthermore allowed digital expression profiling of all of the assembled transcripts across diverse xylogenic and non-xylogenic tissues, which is invaluable for ascribing putative gene functions.

Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform

Tree Genetics & Genomes, 2013

Next-generation sequencing (NGS) technologies are revolutionizing both medical and biological research through generation of massive SNP data sets for identifying heritable genome variation underlying key traits, from rare human diseases to important agronomic phenotypes in crop species. We evaluated the performance of genotyping-bysequencing (GBS), one of the emerging NGS-based platforms, for genotyping two economically important conifer species, lodgepole pine (Pinus contorta) and white spruce (Picea glauca ). Both species have very large genomes (>20,000 Mbp), are highly heterozygous, and lack reference sequences. From a small set (six accessions each) of independent replicated DNA samples and a 48-plex read depth, we obtained~60,000 SNPs per species. After stringent filtering, we obtained 17,765 and 17,845 high-coverage SNPs without missing data for lodgepole pine and white spruce, respectively. Our results demonstrated that GBS is a robust and suitable method for genotyping conifers. The application of GBS to forest tree breeding and genomic selection is discussed.

Development of Genetic Markers in Eucalyptus Species by Target Enrichment and Exome Sequencing

The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus.