Isoperimetric Problems in Discrete Spaces (original) (raw)
Abstract
This paper is a survey on discrete isoperimetric type problems. We present here as some known facts about their solutions as well some new results and demonstrate a general techniques used in this area. The main attention is paid to the unit cube and cube like structures. Besides some applications of the isoperimetric approach are listed too.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (60)
- Ahlswede R., Katona G.O.H. Contributions to the Geometry of Hamming Spaces, Discr. Math., 17, No.1(1977), 1-22.
- Ahlswede R., Koschnick K.U. Note on an Extremal Problem Arising for Unreliable Networks in Parallel Computers, Discr. Math., 47(1983), 137-152.
- Aslanjan L.A., Karachanjan V.M., Torosjan B.E. A Solution of the Discrete Isoperi- metric Problem (in Russian), Doklady AN Arm. SSR, LXV, No.5(1977), 257-262.
- Aslanjan L.A., Karachanjan V.M. A General Specification of Solutions of the Discrete Isoperimetric Problem (in Russian), Doklady AN Arm. SSR, LXV, No.4(1977), 211-215.
- Aslanjan L.A., Karachanjan V.M., Torosjan B.E. On the Compactness of Subsets of Vertices of the n-dimensional Unit Cube, Soviet Math. Dokl., 19, No.4(1979), 781-785.
- Aslanjan L.A. An Isoperimetric Problem and Related Extremal Problems for Dis- crete Spaces (in Russian), in Problemy Kibernetiki 36, Nauka, Moscow 1979, 85- 127.
- Aslanjan L.A. The Discrete Isoperimetric Problem -Asymptotic Case (in Russian), Doklady AN Arm. SSR, LXXIV, No.3(1982), 99-103.
- Aslanjan L.A., Akopova I.A. On the Distribution of the Number of Interior Points in Subsets of the n-Dimensional Unit Cube, in 37. Finite and Infinite Sets, Eger (Hungary) (1981), 47-58.
- Bernstein A.J. Maximally Connected Arrays on the n-Cube, SIAM J. Appl. Math., 15, No.6(1967), 1485-1489.
- Bernstein A.I., Steiglitz K., Hopcroft J.E. Encoding of Analog Signals for Binary Symmetric Channels, IEEE Trans. Info. Theory, 11-12, No.4(1966), 425-430.
- Bezrukov S.L. An Isoperimetric Problem (in Russian), in Diskretny Analiz 43, Novosibirsk 1984, 1-16.
- Bezrukov S.L. On an Isoperimetric Problem (in Russian), in Proc. 6th All-Union Conf. Teor. Cybern. part 1, Saratov 1986, 25-28.
- Bezrukov S.L. Specification of All Solutions of the Discrete Isoperimetric Prob- lem which Have a Critical Cardinality (in Russian), Doklady AN SSSR, 289, No.3(1984), 520-524.
- Bezrukov S.L. On the Minimization of the Boundary of Subsets in Hamming Space (in Russian), in Algebraicheskie i Kombinatornye Metody v Prikladnoi Matematike, Gorky 1985, 45-48.
- Bezrukov S.L. Specification the Maximal Sized Subsets of the Unit Cube with Re- spect to Given Diameter (in Russian), Problemy Peredachi Informacii, XXIII, No.1(1987), 106-109.
- Bezrukov S.L. On Constructing of Solutions of the Isoperimetric Problem in Ham- ming Space, Math. USSR Sbornik, 63, No.1(1989), 81-96.
- Bezrukov S.L. Encoding of Analog Signals for Discrete Binary Channel, in Proc. Int. Conf. ACCT-1, Varna 1988, 12-16.
- Bezrukov S.L. The Kruskal-Katona Type Theorems for Posets, to appear.
- Bezrukov S.L. An Isoperimetric Problem for Manhattan Lattices, in Proc. Int. Conf. Sets, Graphs and Numbers, Budapest 1991, 2-3.
- Bezrukov S.L., Grünwald N., Weber K. On Optimal Edge Numberings of the n-Cube Graph, Discr. Appl. Math. (to appear).
- Bezrukov S.L., Voronin V.P. Extremal Ideals of the Lattice of Multisets with Respect to Symmetric Functionals (in Russian), Diskretnaya Matematika, 2, No.1(1990), 50-58.
- Bollobás B. Martingals, Isoperimetric Inequalities and Random Graphs, in Com- binatorics: 7th Hungarian Colloq. Comb. Eger, July 5-10, 1987, Amsterdam etc. 1988, 113-139.
- Bollobás B., Radcliffe A.J. Isoperimetric Inequalities for Faces of the Cube and the Grid, Europ. J. Combinatorics, 11(1990), 323-333.
- Bollobás B., Leader I. Exact Edge-isoperimetric Inequalities, Europ. J. Combina- torics, 11(1990), 325-340.
- Bollobás B., Leader I. Compressions and Isoperimetric Inequalities, J. Comb. Th., A 56(1991), 47-62.
- Bollobás B., Leader I. Isoperimetric Inequalities and Fractional Set Systems, J. Comb. Th., A 56(1991), 63-74
- Bollobás B., Leader I. Edge-Isoperimetric Inequalities in the Grid (to appear).
- Bollobás B., Leader I. An Isoperimetric Inequality for Independent Subsets of the Cube (to appear).
- Bollobás B., Leader I. An Isoperimetric Inequality on the Discrete Torus, SIAM J. Discr. Math., 3, No.1(1990), 32-37.
- Chukhrov I.P. On Maximal Size of the Boundary of an Antichain (in Russian), Diskretnaya Matematika, 1, No.4(1989), 78-85.
- Clements G.F. Sets of Lattice Points which Contain a Maximal Number of Edges, Proc. Amer. Math. Soc., 27, No.1(1971), 13-15.
- Clements G.F., Lindström B. A Sequence of ±1-Determinants With Large Values, Proc. Amer. Math. Soc., 16, No.3(1965), 548-550.
- Frankl P. A New Short Proof for the Kruskal-Katona Theorem, Discr. Math., 48(1984), 327-329.
- Frankl P. A lower Bound on the Size of a Complex Generated by an Antichain, Discr. Math., 76, No.1(1989), 51-56.
- Frankl P., Füredi Z. A Short Proof for a Theorem of Harper about Hamming- Spheres, Discr. Math., 34(1981), 311-313.
- Füredi Z., Griggs J.R. Families of Finite Sets with Minimum Shadows, Combina- torica, 6, No.4(1986), 355-363.
- Harper L.H. Optimal Assignment of Numbers to Vertices, J. Sos. Ind. Appl. Math, 12, No.1(1964), 131-135.
- Harper L.H. Optimal Numberings and Isoperimetric Problems on Graphs, J. Comb. Theory, 1, No.3(1966), 385-393.
- Hart S. A Note on the Edges of the n-Cube, Discr. Math., 14(1976), 157-163.
- Karachanjan V.M. A Discrete Isoperimetric Problem on Multidimensional Torus (in Russian), Doklady AN Arm. SSR, LXXIV, No.2(1982), 61-65.
- Katona G.O.H. The Hamming-Sphere Has Minimum Boundary, Studia Scient. Math. Hungarica, 10(1975 ), 131-140.
- Kleitman D.J. On a problem of Yuzvinsky on Separating the n-Cube, Discr. Math., 60(1986), 207-213.
- Kleitman D.J. Extremal Hypergraph Problems, in London Math. Soc. Lect. Note Ser., Cambridge Univ. Press Cambridge, No.38(1979), 44-65.
- Kleitman D.J., Krieger M.M., Rothschild B.L. Configurations Maximizing the Num- ber of Pairs of Hamming-Adjacent Lattice Points, Studies in Appl. Math., L, No.2(1971), 115-119.
- Korshunov A.D., Sapozhenko A.A. On the Number of Binary Codes with Distance 2 (in Russian), in Problemy Kibernetiki 40, Nauka, Moscow 1983, 111-130.
- Kostochka A.V. On Maximal Cardinality of the Boundary of a Filter in the Unit Cube (in Russian), in Diskretny Analiz 40, Novosibirsk 1984, 49-61.
- Kostochka A.V. An Upper Bound for the Cardinality of an Antichain in the Unit Cube (in Russian), Diskretnaya Matematika, 1, No.3(1989), 53-61.
- Körner J., Wei V.K. Odd and Even Hamming Spheres Also Have Minimum Bound- ary, Discr. Math., 51(1984), 147-165.
- Körner J., Wei V.K. Addendum to "Odd and Even Hamming Spheres Also Have Minimum Boundary", Discr. Math., 62(1986), 105-106.
- Kruskal J.B. The Number of Simplices in a Complex, in Mathematical Optimization Techniques, Univ. of California Press, Berkeley, Calif. 1963, 251-278.
- Lindsey II J.H. Assignment of Numbers to Vertices, Amer. Math. Monthly, 7(1964), 508-516.
- Lindström B. The Optimal Number of Faces in Cubical Complexes, Arkiv für Math., 8, No.24(1971), 245-257.
- Lindström B., Zetterström A Combinatorial Problem in the k-Adic Number System, Proc. Amer. Math. Soc., 18(1967), 166-170.
- Nigmatullin R.G. Some Metric Relations in the Unit Cube (in Russian), in Diskretny Analiz 9, Novosibirsk 1967, 47-58.
- Nigmatullin R.G. Variational Principle in Boolean Algebra (in Russian), in Diskretny Analiz 10, Novosibirsk 1967, 69-89.
- Sapozhenko A.A. On the Number of Connected Subsets in Bipartite Graphs with Respect to Given Size of the Boundary (in Russian), in Diskretny Analiz 45, Novosi- birsk 1987, 42-70.
- Tiersma H.J. A Note on Hamming Spheres, Discr. Math., 54(1985), 225-228.
- Torosjan B.E. Multicomponemtal Solutions of the Discrete Isoperimetric Problem (in Russian), Diskretnaya Matematika, (to appear).
- Wang D-.L., Wang P. Discrete Isoperimetric Problems, SIAM J. Appl. Math., 32, No.4(1977), 860-870.
- Wang D-.L., Wang P. Extremal Configurations on a Discrete Torus and a Gen- eralization of the Generalized Macaulay Theorem, SIAM J. Appl. Math., 33, No.1(1977), 55-59.