Half sandwich complexes of chalcogenated pyridine based bi-(N, S/Se) and terdentate (N, S/Se, N) ligands with (η6-benzene)ruthenium(ii): synthesis, structure and catalysis of transfer hydrogenation of ketones and oxidation of alcohols (original) (raw)

Abstract

sparkles

AI

This work investigates the synthesis and catalytic activities of novel half-sandwich Ru(II) complexes incorporating chalcogenated pyridine-based bidentate and terdentate ligands. The study identifies these ligands as effective for transfer hydrogenation of ketones and oxidation of alcohols, revealing insights into their structural properties through DFT calculations and crystallographic analysis.

Figures (11)

NMR spectra

NMR spectra

Fig. 1 ORTEP diagram of the cation of 1 with ellipsoids at the 30% probability level. Hydrogen atoms and the PF6 anions have s been omitted for clarity. Bond lengths (A): Ru-S(1) 2.3771(18), Ru-N(1) 2.095(5), Ru(1)-Cl(1) 2.3876(19). Bond angles (°): S(1)-Ru(1)}-N(1) 80.49(15), S(1}-Ru(1)}-C1(1) 93.39(6).

Fig. 1 ORTEP diagram of the cation of 1 with ellipsoids at the 30% probability level. Hydrogen atoms and the PF6 anions have s been omitted for clarity. Bond lengths (A): Ru-S(1) 2.3771(18), Ru-N(1) 2.095(5), Ru(1)-Cl(1) 2.3876(19). Bond angles (°): S(1)-Ru(1)}-N(1) 80.49(15), S(1}-Ru(1)}-C1(1) 93.39(6).

Fig. 4 ORTEP diagram of the cation of 4 with ellipsoids at the 30% probability level. Hydrogen atoms and the PF6 anions have  s been omitted for clarity. Bond lengths (A): Ru-S(1) 2.3133(15), Ru-N(1) 2.098(4), Ru(1)—N(2) 2.111(5). Bond angles (°): N(1)— Ru(1)-S(1) 83.02(13), N(2)—Ru(1)-S(1) 83.13(14)

Fig. 4 ORTEP diagram of the cation of 4 with ellipsoids at the 30% probability level. Hydrogen atoms and the PF6 anions have s been omitted for clarity. Bond lengths (A): Ru-S(1) 2.3133(15), Ru-N(1) 2.098(4), Ru(1)—N(2) 2.111(5). Bond angles (°): N(1)— Ru(1)-S(1) 83.02(13), N(2)—Ru(1)-S(1) 83.13(14)

Fig. 8 Frontier Molecular Orbitals of 1-5

Fig. 8 Frontier Molecular Orbitals of 1-5

charge on Ru also facilitates the formation of ruthenium hydride  needed in case of transfer hydrogenation. Thus Se containing  species are expected to be more efficient for the transfer  hydrogenation catalysis as well. The charges on the other atoms ; are given in Fig. 9 and Table S3 (ESI).  io Experimental  Physical measurement

charge on Ru also facilitates the formation of ruthenium hydride needed in case of transfer hydrogenation. Thus Se containing species are expected to be more efficient for the transfer hydrogenation catalysis as well. The charges on the other atoms ; are given in Fig. 9 and Table S3 (ESI). io Experimental Physical measurement

Om Prakash, Kamal Nayan Sharma, Hemant Joshi, Pancham Lal Gupta, Ajai K. Singh*  Efficiency for transfer hydrogenation and oxidation catalyzed with structurally characterized comple:

Om Prakash, Kamal Nayan Sharma, Hemant Joshi, Pancham Lal Gupta, Ajai K. Singh* Efficiency for transfer hydrogenation and oxidation catalyzed with structurally characterized comple:

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (69)

  1. a) L. Guo, H. Gao, L. Zhang, F. Zhu, Q. Wu, Organometallics, 2010, 29, 2118;
  2. P. Nareddy, L. Mantilli, L. Guénée, C. Mazet, Angew. Chem. Int. Ed., 2012, 51, 3826;
  3. M.J. Hanton, K. Tenza, 35
  4. Organometallics, 2008, 27, 5712; (d) V.C. Gibson, C. Redshaw, G.A. Solan, Chem. Rev., 2007, 107, 1745; (e) C.C. Brown, D.W. Stephan, Dalton Trans., 2010, 39, 7211;
  5. A.K. Tomov, J.J. Chirinos, D.J. Jones, R.J. Long, V.C. Gibson, J. Am. Chem. Soc., 2005, 127, 10166; (g) S. Roy, S. Javed, M.M. Olmstead, A.K. Patra, 40
  6. Dalton Trans., 2011, 40, 12866; (h) J.R.V. Lang, C.E. Denner, H.G. Alt, J. Mol. Catal. A., 2010, 322, 45; (i) F.A.R. Kaul, G.T. Puchta, G.D. Frey, E. Herdtweck, W.A. Herrmann, Organometallics, 2007, 26, 988; (j) J. Börner, U. Flörke, K. Huber, A. Döring, D. Kuckling, S. Herres-Pawlis, Chem. Eur. J., 2009, 15, 2362; (k) R. Langer, Y. 45 Diskin-Posner, G. Leitus, L.J.W. Shimon, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed., 2011, 50, 9948; (l) L. Wan, C. Zhang, Y. Xing, Z. Li, N. Xing, L. Wan, et al., Inorg. Chem., 2012, 51, 6517; (m) F. Speiser, P. Braunstein, L. Saussine, Organometallics, 2004, 23, 2633; (n) M. Vasconcellos-Dias, C.D.
  7. Nunes, P.D. Vaz, P. Ferreira, M.J. Calhorda, Eur. J. Inorg. Chem. 2007, 2917; (o) G. Song, Y. Zhang, Y. Su, W. Deng, K. Han, X. Li, Organometallics, 2008, 27, 6193; (p) Z. Xi, X. Zhang, W. Chen, S. Fu, D. Wang, Organometallics, 2007, 26, 6636; (q) W. Zhang, W.- H. Sun, S. Zhang, J. Hou, K. Wedeking, S. Schultz, et al.,
  8. Organometallics, 2006, 25, 1961; (r) A. Hayashi, M. Okazaki, F. Ozawa, R. Tanaka, Organometallics, 2007, 26, 5246.
  9. a) J.J. Concepcion, J.W. Jurss, P.G. Hoertz, T.J. Meyer, Angew. Chem. Int. Ed., 2009, 48, 9473; (b) F. Zeng, Z. Yu, Organometallics, 2009, 28, 1855; (c) E. Balaraman, C. Gunanathan,
  10. J. Zhang, L.J.W. Shimon, D. Milstein, Nature Chem., 2011, 3, 609;
  11. Y. Sun, C. Koehler, R. Tan, V.T. Annibale, D. Song, Chem. Commun., 2011, 47, 8349; (e) Y. Jiang, C. Xi, Y. Liu, J. Niclós- Gutiérrez, D. Choquesillo-Lazarte, Eur. J. Inorg. Chem., 2005, 1585; (f) E. Mothes, S. Sentets, M.A. Luquin, R. Mathieu, N.
  12. Lugan, G. Lavigne, Organometallics, 2008, 27, 1193; (g) O. Oter, K. Ertekin, O. Dayan, B. Cetinkaya, J. Fluoresc., ,2007, 18, 269; (h) C. del Pozo, M. Iglesias, F. Sánchez, Organometallics, 2011, 30, 2180; (i) M.J. Page, J. Wagler, B.A. Messerle, Organometallics, 2010, 29, 3790; (j)T.S. Kamatchi, N. Chitrapriya, H. Lee, C.F.
  13. Fronczek, F.R. Fronczek, K. Natarajan, Dalton Trans., 2012, 41, 2066; (k) E.L. Dias, M. Brookhart, P.S. White, Stable, Organometallics, 2000, 19, 4995; (l) H. Yoo, P.J. Carroll, D.H. Berry, J. Am. Chem. Soc., 2006, 128, 6038; (m) G.J.P. Britovsek, J. England, S.K. Spitzmesser, A.J.P. White, D.J. Williams, Dalton 75 Trans., 2005, 945; (n) C. Bhaumik, S. Das, D. Saha, S. Dutta, S. Baitalik, Inorg. Chem., 2010, 49, 5049.
  14. J.G. Małecki, M. Jaworska, R. Kruszynski, Polyhedron, 2006, 25, 2519.
  15. a) S. Guሷ nnaz, N. Özdemir, S. Dayan, O. Dayan, B. Cȩtinkaya, 80 Organometallics, 2011, 30, 4165; (b) H. Türkmen, Đ. Kani, B. Çetinkaya, Eur. J. Inorg. Chem., 2012, 4494.
  16. a) O. Dayan, N. Özdemir, Z. Şerbetci , M Dinçer , B. Çetinkaya , O. Büyükgüngör , Inorg. Chim. Acta, 2012, 392, 246; (b) K.D. Camm, A. El-Sokkary,A.L. Gott, P.G. Stockley, T. Belyaeva, P.C. 85 McGowan, Dalton Trans., 2009, 10914.
  17. S. Fernandez, M. Pfeffer, V. Ritleng, C. Sirlin, Organometallics, 1999, 18, 2390.
  18. J.G. Małecki, M. Jaworska, R. Kruszynski, J. Kłak, Polyhedron, 2005, 24, 3012.
  19. a) C. Solórzano, M.A. Davis, Inorg. Chim. Acta., 1985, 97, 135. (b) R. García-Álvarez, S.E. García-Garrido, J. Díez, P. Crochet, V. Cadierno, Eur. J. Inorg. Chem., 2012, 4218; (c) G. Gupta, B. Therrien, S. Park, S.S.Lee , J. Kim, J. Coord. Chem., 2012, 65, 2523; (d) V.R. Anna, K. T. Prasad, P.Wang, K.M. Rao, J. Chem.
  20. a) H. Grützmacher, Angew. Chem. Int. Ed., 2008, 47, 1814;
  21. A.C. da-Silva, H. Piotrowski, P. Mayer, K. Polborn, K. Severin, Eur. J. Inorg. Chem., 2001, 685; (c) K. Severin, Chem. Commun., 2006, 3859.
  22. A.J. Davenport, D.L. Davies, J. Fawcett, D.R. Russell, Dalton Trans., 2004, 1481.
  23. R. Noyori, S. Hashiguchi, Acc. Chem. Res., 1997, 30, 97.
  24. R. García-Álvarez, J. Díez, P. Crochet, V. Cadierno, Organometallics, 2011, 30, 5442. 105 13. D. Carmona, M.P. Lamata, F. Viguri, J. Ferrer, N. García, F.J. Lahoz, et al., Eur. J. Inorg. Chem., 2006, 3155.
  25. a) P. Singh, A.K. Singh, Organometallics, 2010, 29, 6433;
  26. P. Singh, A.K. Singh, Eur. J. Inorg. Chem., 2010, 4187; (c) P. Singh, M. Singh, A.K. Singh, J. Organomet. Chem., 2009, 694, 3872.
  27. 110 15. (a) E.W. Abel, V.S. Dimitrov, N.J. Long, K.G. Orrell, A.G. Osborne, V. Šik, J. Chem. Soc. Dalton Trans., 1993, 291;(b) J.H. Groen, P.W.N.M. van-Leeuwen, K. Vrieze, J. Chem. Soc. Dalton Trans., 1998, 113.
  28. O. Prakash, P. Singh, G. Mukherjee, A.K. Singh, Organometallics, 115 2012, 31, 3379.
  29. a) S.M. Berry, D.C. Bebout, Inorg. Chem., 2005, 44, 27.(b) L. Canovese, F. Visentin,G. Chessa, P. Uguagliati, C. Levi, A. Dolmella, G. Bandoli, Organometallics, 2006, 25, 5355; (c) B.Y. Winer, S.M. Berry, R.D. Pike, D.C. Bebout, Polyhedron, 2012, 48, 120 125;(d) K.K. Bhasin, J. Singh, K.N. Singh, Phosphorus, Sulfur and Silicon, 2002, 177, 597.
  30. P. Raghavendra Kumar, S. Upreti, A.K. Singh, Inorg. Chim. Acta., 2008, 361, 1426.
  31. Q.-F. Zhang, F.K.M. Cheung, W.-Y. Wong, I.D. Williams, W.-H. 125 Leung, Organometallics, 2001, 20, 3777.
  32. S.J. Ahmed, M.I. Hyder, S.E. Kabir, M.A. Miah, A.J. Deeming, E. Nordlander, J. Organomet. Chem., 2006, 691, 309..
  33. M.J. Palmer, M. Wills, Tetrahedron: Asymmetry, 1999, 10, 2045.
  34. X. Wu, J. Xiao, Chem. Commun., 2007, 2449
  35. 130 23. H. Türkmen, T. Pape, F.E. Hahn, B. Çetinkaya, Organometallics, 2008, 27, 571.
  36. A. Bacchi, M. Balordi, R. Cammi, L. Elviri, C. Pelizzi, F. Picchioni, Eur. J. Inorg. Chem., 2008, 4462.
  37. B. Deb, P.P. Sarmah, D.K. Dutta, Eur. J. Inorg. Chem., 2010, 1710. 135
  38. R. Noyori, M.Yamakawa, S. Hashiguchi, J. Org.Chem., 2001, 66, 7931.
  39. a) L.J. Hounjet, M. Bierenstiel, M.J. Ferguson, R. McDonald, M. Cowie, Inorg. Chem. 2010, 49, 4288; (b) L.J. Hounjet, M.J. Ferguson, M. Cowie, Organometallics 2011, 30, 4108.
  40. M.J. Page, J. Wagler, B.A. Messerle, Organometallics 2010, 29, 3790.
  41. I. Nieto, M.S. Livings, J.B. Sacci, L.E. Reuther,M. Zeller, E.T. Papish, Organometallics 2011, 30, 6339.
  42. M.C.Carrión, F.A. Jalón, B.R. Manzano, A.M. Rodríguez, F. Sepúlveda, M. Maestro, Eur. J. Inorg. Chem. 2007, 3961.
  43. L. Gonsalvi, I.W.C.E. Arends, P. Moilanen, R.A. Sheldon, Adv. Synth. Catal., 2003, 345, 1321.
  44. L. Gonsalvi, I.W.C.E. Arends, R.A. Sheldon, Org. Lett., 2002, 4, 1659.
  45. R.S. Drago, Coord. Chem. Rev., 1992, 117, 185.
  46. W.-H. Fung, W.-Y. Yu, C.-M. Che, J. Org. Chem., 1998, 63, 2873.
  47. C.M. Che, T.F. Lai, K.Y. Wong, Inorg. Chem., 1987, 26, 2289.
  48. V.J. Catalano, R.A. Heck, C.E. Immoos, A. Öhman, M.G. Hill, Inorg. Chem., 1998, 37, 2150.
  49. K.N. Kumar, G. Venkatachalam, R. Ramesh, Y. Liu, Polyhedron, 2008, 27, 157.
  50. A.M. El-Hendawy, A.H. Alkubaisi, A.E.-G. El-Kourashy, M.M. Shanab, Polyhedron, 1993, 12, 2343.
  51. A.S. Goldstein, R.S. Drago, J. Chem. Soc., Chem. Commun., 1991, 21.
  52. M. Ulaganatha Raja, N. Gowri, R. Ramesh, Polyhedron, 2010, 29, 1175.
  53. W.H. Leung, C.M. Che, Inorg. Chem., 1989, 28, 4619.
  54. M.M.T. Khan, D. Chatterjee, R.R. Merchant, P. Paul, S.H.R. Abdi, D. Srinivas, M.R.H. Siddiqui, M.A. Moiz, M.M. Bhadbhade, K. Venkatasubramanian, Inorg. Chem., 1992, 31, 2711.
  55. W.-M. Cheung, H.-Y. Ng, I. D. Williams, W.-H. Leung, Inorg. Chem., 2008, 47, 4383.
  56. Y. Do, S.-B. Ko, I.-C. Hwang, K.-E. Lee, S. W. Lee, J. Park, Organometallics, 2009, 28, 4624.
  57. M. U. Raja, R. Ramesh, J. Organomet. Chem., 2012, 699, 5.
  58. P. D. Newman, K.J. Cavell, A. J. Hallett, B.M. Kariuki, Dalton Trans., 2011, 40, 8807.
  59. a) C.A. Mebi, J. Chem. Sci., 2011, 123, 727;
  60. P.K. Chattaraj, B. Maiti, J. Am. Chem. Soc., 2003, 125, 2705; (c) R.G. Pearson, Acc. Chem. Res., 1993, 26, 250; (d) R.G. Parr, R.G. Pearson, J. Am.
  61. Chem. Soc., 1983, 105, 7512;
  62. S. Liu, J. Chem. Sci., 2005, 117, 477.
  63. G.M. Sheldrick, SADABS, 2003.
  64. a) G.M. Sheldrick, Acta Crystallogr. Sect. A: Found., 1990, 46, 467;(b) G.M. Sheldrick, SHELXL-NT, University of Gottingen, Germany, 2000.
  65. M.A. Bennett, A.K. Smith, J. Chem. Soc., Dalton Trans., 1974, 233.
  66. B.S. Furniss, A.J. Hannaford, P.W.G. Smith, A.R. Tatchell, Vogel's textbook of practical organic chemistry, 5th Eds ELBS, Longman, U K Ltd, 1989.
  67. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,M. A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr.T. Vreven, K. N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J.Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P.Salvador, J. J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov,G. Liu,A. Liashenko, P. Piskorz, I. Komaromi, R. L.Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, GAUSSIAN 03 (Revision E.01), Gaussian, Inc., Wallingford, CT, 2004.
  68. A.D. Becke, J. Chem. Phys. 1993, 98, 1372, 5648. Dalton Transactions Accepted Manuscript Downloaded by Indian Institute of Technology New Delhi on 01/04/2013 19:12:57. Published on 28 March 2013 on http://pubs.rsc.org | doi:10.1039/C3DT00126A View Article Online Half sandwich complexes of chalcogenated pyridine based bi-(N, S/Se) and terdentate (N, S/Se, N) ligands with (η 6 -benzene)ruthenium(II): Synthesis, structure and catalysis of transfer hydrogenation of ketones and oxidation of alcohols
  69. Om Prakash, Kamal Nayan Sharma, Hemant Joshi, Pancham Lal Gupta, Ajai K. Singh* Efficiency for transfer hydrogenation and oxidation catalyzed with structurally characterized complexes 1-5 is highest for Se containing bidentate ligand.