Characteristic twists of a Dirichlet series for Siegel cusp forms (original) (raw)

1995, Manuscripta Mathematica

AI-generated Abstract

Characteristic twists of a Dirichlet series for Siegel cusp forms are explored in this work, focusing on the relationship between these twists and various mathematical constructs such as Petersson inner products, Hecke eigenforms, and the Andrianov zeta function. The study derives significant relationships and provides multiple theorems, including conditions under which certain inner products vanish or yield results linked to primitive Dirichlet characters. Additionally, the implications of these findings on the behavior of special functions and modular forms are discussed.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

A note on Fourier-Jacobi coefficients of Siegel modular forms

Archiv der Mathematik, 2013

Let F be a Siegel cusp form of weight k and genus n > 1 with Fourier-Jacobi coefficients f m. In this article, we estimate the growth of the Petersson norms of f m , where m runs over an arithmetic progression. This result sharpens a recent result of Kohnen in [5].

On Dirichlet Series and Petersson Products for Siegel Modular Forms

Annales de l’institut Fourier, 2008

http://aif.cedram.org/item?id=AIF\_2008\_\_58\_3\_801\_0 © Association des Annales de l'institut Fourier, 2008, tous droits réservés. L'accès aux articles de la revue « Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.