Circulating Cell-Free DNA Enables Noninvasive Diagnosis of Heart Transplant Rejection (original) (raw)

Cell-free DNA in the surveillance of heart transplant rejection

Indian Journal of Thoracic and Cardiovascular Surgery, 2021

Background Circulating cell-free deoxyribonucleic acid (cfDNA) is promptly materializing as a highly useful tool for the surveillance of solid-organ transplant rejection. Donor-specific fraction (DF) cfDNA is a potential marker of selective donor organ injury. It is emerging as a promising analytical target in the near future. The aim of this systematic review is to throw light on the importance of cfDNA and future perspective in detecting acute rejection in heart transplantation. Methods An exhaustive search was carried out for this review article on the basis of literature available including scientific databases of PubMed, Embase, and ClinicalTrials.gov. The search engines were systematically explored using the search terms "cell free DNA," "Heart transplant," and "Rejection" from inception until August 2020, and narrative analysis was accomplished. Majority of the studies described endomyocardial biopsy-proven acute rejection as reference standard. Results After initial screening of 331 articles, 11 studies were included and discussed in detail in the present review article. Majority of the studies showed prospective designs. A firm correlation was noted between acute rejection (identified on endomyocardial biopsy) and cfDNA levels by most of the studies. Conclusions cfDNA is a promising tool to replace repeated biopsies to detect rejection. The development in the area of digital droplet polymerase chain reaction and massive parallel sequencing, along with the overall reduction in cost of sequencing with its automation, has helped establish its role in the transplant population.

Relationship Between Donor Derived Cell-Free DNA and Tissue-Based Rejection-Related Transcripts In Heart Transplantation

Introduction Endomyocardial biopsy (EMB)-based traditional microscopy remains the gold standard for the detection of cardiac allograft rejection, despite its limitation of inherent subjectivity leading to inter-reader variability. Alternative techniques now exist to surveil for allograft injury and classify rejection. Donor-derived cell-free DNA (dd-cfDNA) testing is now a validated blood-based assay used to surveil for allograft injury. The molecular microscope diagnostic system (MMDx) utilizes intragraft rejection-associated transcripts (RATs) to classify allograft rejection and identify injury. The use of dd-cfDNA and MMDx together provides objective molecular insight into allograft injury and rejection. The aim of this study was to measure the diagnostic agreement between dd-cfDNA and MMDx and assess the relationship between dd-cfDNA and MMDx-derived RATs which may provide further insight into the pathophysiology of allograft rejection and injury. Methods: This is a retrospectiv...

A Changing Paradigm in Heart Transplantation: An Integrative Approach for Invasive and Non-Invasive Allograft Rejection Monitoring

Biomolecules

Cardiac allograft rejection following heart transplantation is challenging to diagnose. Tissue biopsies are the gold standard in monitoring the different types of rejection. The last decade has seen an increased emphasis on identifying non-invasive methods to improve rejection diagnosis and overcome tissue biopsy invasiveness. Liquid biopsy, as an efficient non-invasive diagnostic and prognostic oncological monitoring tool, seems to be applicable in heart transplant follow-ups. Moreover, molecular techniques applied on blood can be translated to tissue samples to provide novel perspectives on tissue and reveal new diagnostic and prognostic biomarkers. This review aims to provide a comprehensive overview of the state-of-the-art of the new methodologies in cardiac allograft rejection monitoring and investigate the future perspectives on invasive and non-invasive rejection biomarkers identification. We reviewed literature from the most used scientific databases, such as PubMed, Google ...

Donor fraction cell-free DNA and rejection in adult and pediatric heart transplantation

The Journal of Heart and Lung Transplantation, 2019

BACKGROUND: Endomyocardial biopsy (EMB) is the current standard for rejection surveillance in heart transplant recipients. The quantification of donor-specific cell-free DNA (cfDNA) may be an appropriate biomarker for non-invasive rejection surveillance. A multicenter prospective blinded study (DNA-Based Transplant Rejection Test, DTRT) investigated the value of donor fraction (DF), defined as the ratio of cfDNA specific to the transplanted organ to the total amount of cfDNA present in a blood sample. METHODS: A total of 241 heart transplant patients were recruited from 7 centers. Age at transplant ranged from 8 days to 73 years, with 146 subjects <18 years and 95 ≥18 years. All the patients were followed for at least 1 year, with blood samples drawn at routine and for-cause biopsies. A total of 624 biopsy-paired samples were included for analysis through a commercially available cfDNA assay (myTAI HEART , TAI Diagnostics Inc.). A blinded analysis of repeated measures compared the outcomes using receiver operating characteristic (ROC) curves. All primary clinical end-points were monitored at 100%. All analysis and conclusions were reviewed by both an independent external oversight committee and the National Institutes of Health-mandated DTRT steering committee.

Cell-free DNA donor fraction analysis in pediatric and adult heart transplant patients by multiplexed allele-specific quantitative PCR: Validation of a rapid and highly sensitive clinical test for stratification of rejection probability

PLOS ONE

Lifelong noninvasive rejection monitoring in heart transplant patients is a critical clinical need historically poorly met in adults and unavailable for children and infants. Cell-free DNA (cfDNA) donor-specific fraction (DF), a direct marker of selective donor organ injury, is a promising analytical target. Methodological differences in sample processing and DF determination profoundly affect quality and sensitivity of cfDNA analyses, requiring specialized optimization for low cfDNA levels typical of transplant patients. Using next-generation sequencing, we previously correlated elevated DF with acute cellular and antibody-mediated rejection (ACR and AMR) in pediatric and adult heart transplant patients. However, next-generation sequencing is limited by cost, TAT, and sensitivity, leading us to clinically validate a rapid, highly sensitive, quantitative genotyping test, myTAI HEART ® , addressing these limitations. To assure pre-analytical quality and consider interrelated cfDNA measures, plasma preparation was optimized and total cfDNA (TCF) concentration, DNA fragmentation, and DF quantification were validated in parallel for integration into myTAI HEART reporting. Analytical validations employed individual and reconstructed mixtures of human blood-derived genomic DNA (gDNA), cfDNA, and gDNA sheared to apoptotic length. Precision, linearity, and limits of blank/detection/quantification were established for TCF concentration, DNA fragmentation ratio, and DF determinations. For DF, multiplexed high-fidelity amplification followed by quantitative genotyping of 94 SNP targets was applied to 1168 samples to evaluate donor options in staged simulations, demonstrating DF call equivalency with/without donor genotype. Clinical validation studies using 158 matched endomyocardial

Molecular testing for long-term rejection surveillance in heart transplant recipients: design of the Invasive Monitoring Attenuation Through Gene Expression (IMAGE) …

The Journal of heart and …, 2007

Background: Acute rejection continues to occur beyond the first year after cardiac transplantation, but the optimal strategy for detecting rejection during this late period is still controversial. Gene expression profiling (GEP), with its high negative predictive value for acute cellular rejection (ACR), appears to be well suited to identify low-risk patients who can be safely managed without routine invasive endomyocardial biopsy (EMB). Methods: The Invasive Monitoring Attenuation Through Gene Expression (IMAGE) study is a prospective, multicenter, non-blinded, randomized clinical trial designed to test the hypothesis that a primarily non-invasive rejection surveillance strategy utilizing GEP testing is not inferior to an invasive EMB-based strategy with respect to cardiac allograft dysfunction, rejection with hemodynamic compromise (HDC) and all-cause mortality. Results: A total of 199 heart transplant recipients in their second through fifth post-transplant years have been enrolled in the IMAGE study since January 13, 2005. The study is expected to continue through 2008. Conclusions: The IMAGE study is the first randomized, controlled comparison of two rejection surveillance strategies measuring outcomes in heart transplant recipients who are beyond their first year post-transplant. The move away from routine histologic evaluation for allograft rejection represents an important paradigm shift in cardiac transplantation, and the results of this study have important implications for the future management of heart transplant patients.

Whole Blood Genomic Biomarkers of Acute Cardiac Allograft Rejection

The Journal of Heart and Lung Transplantation, 2009

Background: Significant progress has been made in cardiac transplantation over the past 30 years; however, the means for detection of acute cardiac allograft rejection remains in need of improvement. At present, the endomyocardial biopsy, an invasive and inconvenient procedure for patients, is required for the surveillance and diagnosis of acute cardiac allograft rejection. In the Biomarkers in Transplantation initiative, we investigated gene expression profiles in peripheral blood of cardiac transplant subjects as potential biomarkers for diagnosis of allograft rejection.

Noninvasive Discrimination of Rejection in Cardiac Allograft Recipients Using Gene Expression Profiling

American Journal of Transplantation, 2006

is invasive, expensive and variable. We investigated gene expression profiling of peripheral blood mononuclear cells (PBMC) to discriminate ISHLT grade 0 rejection (quiescence) from moderate/severe rejection (ISHLT ≥3A). Patients were followed prospectively with blood sampling at post-transplant visits. Biopsies were graded by ISHLT criteria locally and by three independent pathologists blinded to clinical data. Known alloimmune pathways and leukocyte microarrays identified 252 candidate genes for which real-time PCR assays were developed. An 11 gene realtime PCR test was derived from a training set (n = 145 samples, 107 patients) using linear discriminant analysis (LDA), converted into a score (0-40), and validated prospectively in an independent set (n = 63 samples, 63 patients). The test distinguished biopsydefined moderate/severe rejection from quiescence (p = 0.0018) in the validation set, and had agreement of 84% (95% CI 66% C94%) with grade ISHLT ≥3A rejection. Patients >1 year post-transplant with scores below 30 (approximately 68% of the study population) are very unlikely to have grade ≥3A rejection (NPV = 99.6%). Gene expression testing can detect absence of moderate/severe rejection, thus avoiding biopsy in certain clinical settings. Additional clinical experience is needed to establish the role of molecular testing for clinical event prediction and immunosuppression management.