Plasmodium falciparum Tudor Staphylococcal Nuclease interacting proteins suggest its role in nuclear as well as splicing processes (original) (raw)

PfSR1 controls alternative splicing and steady-state RNA levels inPlasmodium falciparumthrough preferential recognition of specific RNA motifs

Molecular Microbiology, 2015

Plasmodium species have evolved complex biology to adapt to different hosts and changing environments throughout their life cycle. Remarkably, these adaptations are achieved by a relatively small genome. One way by which the parasite expands its proteome is through alternative splicing (AS). We recently identified PfSR1 as a bona fide Ser/Arg-rich (SR) protein that shuttles between the nucleus and cytoplasm and regulates AS in Plasmodium falciparum. Here we show that PfSR1 is localized adjacent to the Nuclear Pore Complex (NPC) clusters in the nucleus of early stage parasites. To identify the endogenous RNA targets of PfSR1, we adapted an inducible overexpression system for tagged PfSR1 and performed RNA immunoprecipitation followed by microarray analysis (RIPchip) to recover and identify the endogenous RNA targets that bind PfSR1. Bioinformatic analysis of these RNAs revealed common sequence motifs potentially recognized by PfSR1. RNA-EMSAs show that PfSR1 preferentially binds RNA molecules containing these motifs. Interestingly, we find that PfSR1 not only regulates AS but also the steady-state levels of mRNAs containing these motifs in vivo.

A novel Plasmodium falciparum SR protein is an alternative splicing factor required for the parasites' proliferation in human erythrocytes

Nucleic Acids Research, 2012

Malaria parasites have a complex life cycle, during which they undergo significant biological changes to adapt to different hosts and changing environments. Plasmodium falciparum, the species responsible for the deadliest form of human malaria, maintains this complex life cycle with a relatively small number of genes. Alternative splicing (AS) is an important post-transcriptional mechanisms that enables eukaryotic organisms to expand their protein repertoire out of relatively small number of genes. SR proteins are major regulators of AS in higher eukaryotes. Nevertheless, the regulation of splicing as well as the AS machinery in Plasmodium spp. are still elusive. Here, we show that PfSR1, a putative P. falciparum SR protein, can mediate RNA splicing in vitro. In addition, we show that PfSR1 functions as an AS factor in mini-gene in vivo systems similar to the mammalian SR protein SRSF1. Expression of PfSR1-myc in P. falciparum shows distinct patterns of cellular localization during intra erythrocytic development. Furthermore, we determine that the predicted RS domain of PfSR1 is essential for its localization to the nucleus. Finally, we demonstrate that proper regulation of pfsr1 is required for parasite proliferation in human RBCs and over-expression of pfsr1 influences AS activity of P. falciparum genes in vivo.

Isolation and characterization of Plasmodium falciparum UAP56 homolog: Evidence for the coupling of RNA binding and splicing activity by site-directed mutations

Archives of Biochemistry and Biophysics, 2008

a b s t r a c t UAP56 (U2AF65 associated protein) is a member of the DEAD-box helicase family. Helicases are essential enzymes generally involved in the metabolism of nucleic acids. The gene encoding a member of DEADbox family was cloned and characterized from the human malaria parasite Plasmodium falciparum. PfU52 is homologous to UAP56 and contains the RNA-dependent ATPase, RNA helicase and RNA binding activities. Using the parasite extract we report that PfU52 is involved in splicing reaction. Site-directed mutagenesis studies indicate that the conserved residues glycine 181, isoleucine 182 and arginine 206 are involved in RNA binding and this activity is required for the enzymatic activities of PfU52. PfU52 is expressed in all the intraerythrocytic developmental stages of the parasite. In the present study we have reported the detailed characterization of PfU52 from P. falciparum and these results advance the knowledge regarding the function of UAP56 in general.

5′ and 3′ end modifications of spliceosomal RNAs in Plasmodium falciparum

Molecular biology …, 2010

5 0 caps provide recognition sequences for the nuclear import of snRNAs. The 5 0 and 3 0 ends of snRNAs were studied in Plasmodium falciparum with a modified adapter ligation method, which showed that 5 0 ends of U1, U2, U4, U5 and U6 snRNAs are capped. In P. falciparum, the 3 0 ends of U1, U2, U4 and U5 snRNAs have free hydroxyl groups whereas U6 snRNA has a blocked 3 0 end. An immunoprecipitation assay for trimethyl guanosine caps shows that the cap structures of parasite U1-U5 snRNAs are hypermethylated while U6 snRNA may be c-mono-methylated. Bioinformatics analysis of proteins involved in hypermethylation and trafficking of snRNAs indicates that the methyltransferase TGS1 is present in the P. falciparum genome. PfTGS1 is larger than its orthologs and may have transmembrane domains in the C-terminus. Surprisingly, the snRNA trafficking protein Snurportin is absent from the P. falciparum genome suggesting that reminiscent of yeast, parasite snRNAs may be retained in the nucleus.

PfSRPK1, a Novel Splicing-related Kinase from Plasmodium falciparum

Journal of Biological Chemistry, 2010

Even though it is increasingly evident that post-transcriptional events like mRNA processing and splicing may regulate gene expression and proteome diversity of malaria parasite Plasmodium, molecular mechanisms that regulate events like mRNA splicing in malaria parasite are poorly understood. Protein kinases control a wide variety of cellular events in almost all eukaryotes, including modulation of mRNA splicing, transport, and stability. We have identified a novel splicing-related protein kinase from Plasmodium falciparum, PfSRPK1. PfSRPK1 when incubated with parasite nuclear extracts inhibited RNA splicing, suggesting that it may control mRNA splicing in the parasite. PfSR1, a putative splicing factor from P. falciparum, was identified as a substrate of PfSRPK1. PfSR1 interacts with RNA and PfSRPK1 modulates its RNA binding. Early in the parasite development, PfSRPK1 and PfSR1 are present in the nucleus. These studies provide useful insights into the function of two potentially key components of P. falciparum mRNA splicing machinery.

Plasmodium falciparum spliceosomal RNAs: 3′ and 5′ end processing

Acta Tropica, 2011

The major spliceosomal small nuclear ribonucleoproteins (snRNPs) consist of snRNA (U1, U2, U4 or U5) and several proteins which can be unique or common to each snRNP particle. The common proteins are known as Sm proteins; they are crucial for RNP assembly and nuclear import of spliceosomal RNPs. This paper reports detecting the interaction between Plasmodium falciparum snRNAs and Sm proteins, and the usual 5 trimethylated caps on the snRNAs, by immunoprecipitation with specific antibodies. Furthermore, an unusual poly(A) tail was detected on these non-coding RNAs.

Researchlocalization and histone binding properties of nuclear-associated nucleosome assembly protein from Plasmodium falciparum

Malar J, 2010

Background: Nucleosome assembly proteins (NAPs) are histone chaperones that are crucial for the shuttling and incorporation of histones into nucleosomes. NAPs participate in the assembly and disassembly of nucleosomes thus contributing to chromatin structure organization. The human malaria parasite Plasmodium falciparum contains two nucleosome assembly proteins termed PfNapL and PfNapS. Methods: Three-dimensional crystal structure of PfNapS has been determined and analysed. Gene knockout and localization studies were also performed on PfNapS using transfection studies. Fluorescence spectroscopy was performed to identify histone-binding sites on PfNapS. Extensive sequence and structural comparisons were done with the crystal structures available for NAP/SET family of proteins. Results: Crystal structure of PfNapS shares structural similarity with previous structures from NAP/SET family. Failed attempts to knockout the gene for PfNapS from malaria parasite suggest essentiality in the parasite. GFP-fused PfNapS fusion protein targeting indicates cellular localization of PfNapS in the parasite nucleus. Fluorescence spectroscopy data suggest that PfNapS interacts with core histones (tetramer, octamer, H3, H4, H2A and H2B) at a different site from its interaction with linker histone H1. This analysis illustrates two regions on the PfNapS dimer as the possible sites for histone recognition. Conclusions: This work presents a thorough analysis of the structural, functional and regulatory attributes of PfNapS from P. falciparum with respect to previously studied histone chaperones.

Single-target high-throughput transcription analyses reveal high levels of alternative splicing present in the FPPS/GGPPS from Plasmodium falciparum

Scientific reports, 2015

Malaria is a tropical disease with significant morbidity and mortality. A better understanding of the metabolism of its most important etiological agent, Plasmodium falciparum, is paramount to the development of better treatment and other mitigation measures. Farnesyldiphosphate synthase/geranylgeranyldiphosphate synthase (FPPS/GGPPS) is a key enzyme in the synthesis of isoprenic chains present in many essential structures. In P. falciparum, as well as a handful of other organisms, FPPS/GGPPS has been shown to be a bifunctional enzyme. By genetic tagging and microscopy, we observed a changing localization of FPPS/GGPPS in blood stage parasites. Given the great importance of alternative splicing and other transcriptional phenomena in gene regulation and the generation of protein diversity, we have investigated the processing of the FPPS/GGPPS transcript in P. falciparum by high-throughput sequencing methods in four time-points along the intraerythrocytic cycle of P. falciparum. We ha...